留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  515
  • HTML全文浏览量:  201
  • PDF下载量:  46
  • 被引次数: 0
Shanshan Liu, Shaolong Li, Chenhui Liu, Jilin He, and Jianxun Song, Effect of fluoride ions on coordination structure of titanium inmolten NaCl–KCl, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 868-876. https://doi.org/10.1007/s12613-022-2527-z
Cite this article as:
Shanshan Liu, Shaolong Li, Chenhui Liu, Jilin He, and Jianxun Song, Effect of fluoride ions on coordination structure of titanium inmolten NaCl–KCl, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 868-876. https://doi.org/10.1007/s12613-022-2527-z
引用本文 PDF XML SpringerLink
研究论文

F对熔融NaCl–KCl熔盐中钛离子配位结构的影响

  • 通讯作者:

    宋建勋    E-mail: songjx00@163.com

文章亮点

  • (1) 研究了氟离子对钛离子在NaCl–KCl熔盐中的电化学还原机制的影响。
  • (2) 得到了Ti–F在不同氟离子含量下的配位机理。
  • (3) 熔盐中F的加入缩短了钛离子的还原步骤,并极大地影响了价态钛离子的比例,为沉积钛过程提供了理论支持。
  • 本文采用电化学、数学分析和光谱分析相结合的方法,研究了氟离子(F)对钛离子(Tin+)的电化学行为和配位性能的影响,以α表示F和Tin+的摩尔浓度比。采用循环伏安法(CV)、方波伏安法(SWV)和开路电位法(OCP)研究了不同α条件下钛离子的电化学行为,并采用原位采样器制备了α = 0、1.0、2.0、3.0、4.0、5.0、6.0、8.0时的熔盐样品,然后用X射线光电子能谱(XPS)和拉曼光谱对样品进行分析。结果表明:熔盐中F的加入缩短了钛离子的还原步骤,并极大地影响了价态钛离子的比例,使高价态钛含量增加且更加稳定,当α大于3.0时,Ti2+不再存在于熔盐中,最终转移到价态更高的钛离子中。研究发现,这些现象背后的机制是由于配合物(TiCljFim)的形成,这对揭示钛还原过程机理和电解质的选择具有重要意义。
  • Research Article

    Effect of fluoride ions on coordination structure of titanium inmolten NaCl–KCl

    + Author Affiliations
    • The effects of fluoride ions (F) on the electrochemical behavior and coordination properties of titanium ions (Tin+) were studied in this work, by combining electrochemical and mathematical analysis as well as spectral techniques. The α was taken as a factor to indicate the molar concentration ratio of F and Tin+. Cyclic voltammetry (CV), square wave voltammetry (SWV), and open circuit potential method (OCP) were used to study the electrochemical behavior of titanium ions under conditions of various α, and in-situ sampler was used to prepare molten salt samples when α equal to 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 8.0. And then, samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The results showed that F in molten salt can reduce the reduction steps of titanium ions and greatly affects the proportion of valence titanium ions which making the high-valence titanium content increased and more stable. Ti2+ cannot be detected in the molten salt when α is higher than 3.0 and finally transferred to titanium ions with higher valence state. Investigation revealed that the mechanism behind those phenomenon is the coordination compounds ($\text{TiCl}_{j}\text{F}_{i}^{m-}$) forming.
    • loading
    • [1]
      A. Dehghan-Manshadi, M.J. Bermingham, M.S. Dargusch, D.H. StJohn, and M. Qian, Metal injection moulding of titanium and titanium alloys: Challenges and recent development, Powder Technol., 319(2017), p. 289. doi: 10.1016/j.powtec.2017.06.053
      [2]
      E. Ahmadi, R.O. Suzuki, T. Kikuchi, T. Kaneko, and Y. Yashima, Towards a sustainable technology for production of extra-pure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1635. doi: 10.1007/s12613-020-2162-5
      [3]
      T.C. Yuan, Q.G. Weng, Z.H. Zhou, J. Li, and Y.H. He, Preparation of high-purity titanium by molten-salt electrolysis process, Adv. Mater. Res., 284-286(2011), p. 1477. doi: 10.4028/www.scientific.net/AMR.284-286.1477
      [4]
      M. Chen, X.Q. Wang, E.L. Zhang, Y.Z. Wan, and J. Hu, Antibacterial ability and biocompatibility of fluorinated titanium by plasma-based surface modification, Rare Met., 41(2022), No. 2, p. 689. doi: 10.1007/s12598-021-01808-y
      [5]
      L.C. Tsao, Effects of different electrolytes on microstructure and antibacterial properties of microarc oxidized coatings of CP-Ti, Int. J. Mater. Mech. Manuf., 8(2020), No. 2, p. 34. doi: 10.18178/ijmmm.2020.8.2.480
      [6]
      A. Ebrahimi, H. Esfahani, O. Imantalab, and A. Fattah-Alhosseini, Biological, antibacterial activities and electrochemical behavior of borided commercially pure titanium in BSA-containing PBS, Trans. Nonferrous Met. Soc. China, 30(2020), No. 4, p. 944. doi: 10.1016/S1003-6326(20)65267-0
      [7]
      J.X. Song, X.X. Huang, J.Y. Wu, and X. Zhang, Electrochemical behaviors of Ti(III) in molten NaCl–KCl under various contents of fluoride, Electrochim. Acta, 256(2017), p. 252. doi: 10.1016/j.electacta.2017.10.058
      [8]
      G.M. Haarberg, W. Rolland, Å. Sterten, and J. Thonstad, Electrodeposition of titanium from chloride melts, J. Appl. Electrochem., 23(1993), No. 3, p. 217. doi: 10.1007/BF00241912
      [9]
      Y.F. Cai, N.N. Song, Y.F. Yang, L.M. Sun, P. Hu, and J.S. Wang, Recent progress of efficient utilization of titanium-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 22. doi: 10.1007/s12613-021-2323-1
      [10]
      Q.Y. Wang, Y. Li, S.Q. Jiao, and H.M. Zhu, Producing metallic titanium through electro-refining of titanium nitride anode, Electrochem. Commun., 35(2013), p. 135. doi: 10.1016/j.elecom.2013.07.047
      [11]
      S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
      [12]
      A. Girginov, T.Z. Tzvetkoff, and M. Bojinov, Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes, J. Appl. Electrochem., 25(1995), No. 11, p. 993. doi: 10.1007/BF00241947
      [13]
      H. Wendt, K. Reuhl, and V. Schwarz, Cathodic deposition of refractory intermetallic compounds from flinak-melts—I. Voltammetric investigation of Ti, Zr, B, TiB2 and ZrB2, Electrochim. Acta, 37(1992), No. 2, p. 237. doi: 10.1016/0013-4686(92)85009-A
      [14]
      J.X. Song, Q.Y. Wang, M.H. Kang, S.Q. Jiao, and H.M. Zhu, The equilibrium between titanium ions and metallic titanium in the molten binary mixtures of LiCl, Electrochim. Acta., 82(2014), No. 12, p. 1047. doi: 10.5796/ELECTROCHEMISTRY.82.1047
      [15]
      J.X. Song, Q.Y. Wang, J.Y. Wu, S.Q. Jiao, and H.M. Zhu, The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts, Faraday Discuss., 190(2016), p. 421. doi: 10.1039/C6FD00007J
      [16]
      G.R. Stafford and T.P. Moffat, Electrochemistry of titanium in molten 2AlCl3–NaCl, J. Electrochem. Soc., 142(1995), No. 10, p. 3288. doi: 10.1149/1.2049976
      [17]
      E. Chassaing, F. Basile, and G. Lorthioir, Study of Ti(III) solutions in various molten alkali chlorides. I. Chemical and electrochemical investigation, J. Appl. Electrochem., 11(1981), No. 2, p. 187. doi: 10.1007/BF00610979
      [18]
      M.H. Kang, J.X. Song, H.M. Zhu, and S.Q. Jiao, Electrochemical behavior of titanium(II) ion in a purified calcium chloride melt, Metall. Mater. Trans. B, 46(2015), No. 1, p. 162. doi: 10.1007/s11663-014-0191-z
      [19]
      Y. Song, S.Q. Jiao, L.W. Hu, and Z.C. Guo, The cathodic behavior of Ti(III) ion in a NaCl–2CsCl melt, Metall. Mater. Trans. B, 47(2016), No. 1, p. 804. doi: 10.1007/s11663-015-0521-9
      [20]
      T. Uda, T.H. Okabe, Y. Waseda, and Y. Awakura, Electroplating of titanium on iron by galvanic contact deposition in NaCl–TiCl2 molten salt, Sci. Technol. Adv. Mater., 7(2006), No. 6, p. 490. doi: 10.1016/j.stam.2006.02.016
      [21]
      J.X. Song, Q.Y. Wang, G.J. Hu, X.B. Zhu, S.Q. Jiao, and H.M. Zhu, Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl–KCl melt, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 660. doi: 10.1007/s12613-014-0955-0
      [22]
      J.X. Song and A. Mukherjee, Influence of F on the electrochemical properties of titanium ions and Al–Ti alloy electrodeposition in molten AlCl3–NaCl, RSC Adv., 6(2016), No. 85, p. 82049. doi: 10.1039/C6RA18417K
      [23]
      G.S. Chen, M. Okido, and T. Oki, Electrochemical studies of titanium in fluoride–chloride molten salts, J. Appl. Electrochem., 18(1988), No. 1, p. 80. doi: 10.1007/BF01016208
      [24]
      N. Ene and S. Zuca, Role of free F anions in the electrorefining of titanium in molten alkali halide mixtures, J. Appl. Electrochem., 25(1995), No. 7, p. 671. doi: 10.1007/BF00241929
      [25]
      B.N. Popov, M.C. Kimble, R.E. White, and H. Wendt, Electrochemical behaviour of titanium(II) and titanium(III) compounds in molten lithium chloride/potassium chloride eutectic melts, J. Appl. Electrochem., 21(1991), No. 4, p. 351. doi: 10.1007/BF01020221
      [26]
      F.H. Bright and J.G. Wurm, Some new fluoride complexes of trivalent titanium, Can. J. Chem., 36(1958), No. 4, p. 615. doi: 10.1139/v58-087
      [27]
      F. Lantelme and A. Salmi, Electrochemistry of titanium in NaCl–KCl mixtures and influence of dissolved fluoride ions, J. Electrochem. Soc., 142(1995), No. 10, p. 3451. doi: 10.1149/1.2050003
      [28]
      L.P. Polyakova, P. Taxil, and E.G. Polyakov, Electrochemical behaviour and codeposition of titanium and niobium in chloride–fluoride melts, J. Alloys Compd., 359(2003), No. 1-2, p. 244. doi: 10.1016/S0925-8388(03)00180-4
      [29]
      A. Robin and J. de Lepinay, Determination of the apparent standard potential of the Ti/Ti(III) system in the LiF–NaF–KF eutectic using voltammetry, chronopotentiometry and open-circuit potentiometry, Electrochim. Acta, 36(1991), No. 5-6, p. 1009. doi: 10.1016/0013-4686(91)85308-T
      [30]
      J.X. Song, Q.Y. Wang, X.B. Zhu, J. Hou, S. Jiao, and H.M. Zhu, The influence of fluoride anion on the equilibrium between titanium ions and electrodeposition of titanium in molten fluoride–chloride salt, Mater. Trans., 55(2014), No. 8, p. 1299. doi: 10.2320/matertrans.M2014071
      [31]
      Q.Y. Wang, J.X. Song, G.J. Hu, et al., The equilibrium between titanium ions and titanium metal in NaCl–KCl equimolar molten salt, Metall. Mater. Trans. B, 44(2013), No. 4, p. 906. doi: 10.1007/s11663-013-9853-5
      [32]
      Z.T. Liu, G.M. Lu, and J.G. Yu, Electrochemical behavior of magnesium ions in chloride melt, Ionics, 25(2019), No. 6, p. 2719. doi: 10.1007/s11581-019-02881-1
      [33]
      J.L. Liang, H. Li, D.X. Huo, et al., Electrochemical characteristics of TiO2 in NaCl–KCl–NaF molten salt system, Ionics, 24(2018), No. 10, p. 3221. doi: 10.1007/s11581-018-2503-9
      [34]
      S. Delpech, S. Jaskierowicz, and D. Rodrigues, Electrochemistry of thorium fluoride in LiCl–KCl eutectic melts and methodology for speciation studies with fluorides ions, Electrochim. Acta, 144(2014), p. 383. doi: 10.1016/j.electacta.2014.07.096
      [35]
      D. Lambertin, J. Lacquement, S. Sanchez, and G.S. Picard, Dismutation of divalent americium induced by the addition of fluoride anion to a LiCl–KCl eutectic at 743 K, Electrochem. Commun., 3(2001), No. 9, p. 519. doi: 10.1016/S1388-2481(01)00210-7
      [36]
      Y.L. Liu, J.H. Lan, L. Wang, et al., The influence of F ion on the electrochemical behavior and coordination properties of uranium in LiCl–KCl molten salt, Electrochimica Acta, 404(2022), art. No. 139573. doi: 10.1016/j.electacta.2021.139573
      [37]
      D.S. Maltsev, V.A. Volkovich, B.D. Vasin, and E.N. Vladykin, An electrochemical study of uranium behaviour in LiCl–KCl–CsCl eutectic melt, J. Nucl. Mater., 467(2015), p. 956. doi: 10.1016/j.jnucmat.2015.10.014
      [38]
      H.D. Jiao, W.L. Song, H.S. Chen, M.Y. Wang, S.Q. Jiao, and D.N. Fang, Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis, J. Clean. Prod., 261(2020), art. No. 121314. doi: 10.1016/j.jclepro.2020.121314
      [39]
      A. Léon, D. Schild, and M. Fichtner, Chemical state of Ti in sodium alanate doped with TiCl3 using X-ray photoelectron spectroscopy, J. Alloys Compd., 404-406(2005), p. 766. doi: 10.1016/j.jallcom.2004.11.129
      [40]
      I.M. Shlyapnikov, H.P.A. Mercier, E.A. Goreshnik, G.J. Schrobilgen, and Z. Mazej, Crystal structures and Raman spectra of imidazolium poly[perfluorotitanate(IV)] salts containing the [TiF6]2−, ([Ti2F9]), and [Ti2F11]3− and the new [Ti4F20]4− and [Ti5F23]3− anions, Inorg. Chem., 52(2013), No. 15, p. 8315. doi: 10.1021/ic302468j
      [41]
      H. Miyaoka, K. Hasebe, M. Sawada, et al., Raman spectrum and normal mode analysis of α-TiCl3, Vib. Spectrosc., 17(1998), No. 2, p. 183. doi: 10.1016/S0924-2031(98)00030-7

    Catalog


    • /

      返回文章
      返回