留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(7)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  818
  • HTML全文浏览量:  304
  • PDF下载量:  130
  • 被引次数: 0
Naigen Tan, Renshu Yang,  and Zhuoying Tan, Influence of complicated faults on the differentiation and accumulation of in-situ stress in deep rock mass, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 791-801. https://doi.org/10.1007/s12613-022-2528-y
Cite this article as:
Naigen Tan, Renshu Yang,  and Zhuoying Tan, Influence of complicated faults on the differentiation and accumulation of in-situ stress in deep rock mass, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 791-801. https://doi.org/10.1007/s12613-022-2528-y
引用本文 PDF XML SpringerLink
研究论文

复杂断层对深部岩体原位应力分异与集中的影响


  • 通讯作者:

    谭卓英    E-mail: markzhuoyingtan@ustb.edu.cn

文章亮点

  • (1) 系统地研究了复杂断层位置对深部地应力的积聚效应及方向转变的影响。
  • (2) 揭示了断层位置对地应力大小和方向的影响机理及其分异规律。
  • (3) 数值仿真模拟和震源机制验证了断层附近地应力的非均质性以及应力积聚与分布特征。
  • (4) 指出断层属性和位置对地应力大小及方向的影响同样存在显著的分异性。
  • 地应力随深度呈线性增长,在深部高应力将成为常态。随着深度的增大地质结构复杂性增加。断层、小裂缝、节理裂隙广泛发育。为了探索断层对地应力的影响及其发生机制,本文在7个超千米钻孔中进行了水压致裂地应力测试,定量确定了断层上下盘、断层间、断层端部、断层交汇处及断层远场的应力。研究了断层位置和属性对应力大小和方向的影响。通过三维数值模拟,阐明了断层附近应力的非均质性,解释了断层对地应力积聚和分异的影响。受区域构造及断层作用影响,地应力大小、方向以及状态在不同位置发生显著的分异。在断层附近,地应力的集中程度和方向变化随断层位置而发生差异;在离断层较远处,地应力大小和方向与区域构造应力一致。利用历史地震动矢量对震源机制解进行了验证。结果表明,断层属性和位置将对应力分异产生显著影响。应力分异由强到弱依次为断层间、断层交汇处、下盘、断层端部及上盘,而方向变化强弱依次为下盘、断层间、断层端部、断层交汇处和上盘,揭示了断层诱发应力累积和方向转变的内在机制。
  • Research Article

    Influence of complicated faults on the differentiation and accumulation of in-situ stress in deep rock mass

    + Author Affiliations
    • High geostress will become a normality in the deep because in-situ stress rises linearly with depth. The geological structure grows immensely intricate as depth increases. Faults, small fractures, and joint fissures are widely developed. The objective of this paper is to identify geostress anomalies at a variety of locations near faults and to demonstrate their accumulation mechanism. Hydrofracturing tests were conducted in seven deep boreholes. We conducted a test at a drilling depth of over one thousand meters to reveal and quantify the influence of faults on in-situ stresses at the hanging wall, footwall, between faults, end of faults, junction of faults, and far-field of faults. The effect of fault sites and characteristics on the direction and magnitude of stresses has been investigated and compared to test boreholes. The accumulation heterogeneity of stresses near faults was illustrated by a three-dimensional numerical simulation, which is utilized to explain the effect of faults on the accumulation and differentiation of in-situ stress. Due to regional tectonics and faulting, the magnitude, direction, and stress regime are all extremely different. The concentration degree of geostress and direction change will vary with the location of faults near faults, but the magnitude and direction of in-situ stress conform to regional tectonic stress at a distance from the faults. The focal mechanism solution has been verified using historical seismic ground motion vectors. The results demonstrate that the degree of stress differentiation varies according to the fault attribute and its position. Changes in stress differentiation and its ratio from strong to weak occur between faults, intersection, footwall, end of faults, and hanging wall; along with the sequence of orientation is the footwall, between faults, the end of faults, intersection, and hanging wall. This work sheds new light on the fault-induced stress accumulation and orientation shift mechanisms across the entire cycle.
    • loading
    • [1]
      M.C. He, Rock mechanics and hazard control in deep mining engineering in China, [in] Proceedings of the ISRM International Symposium 2006 and the 4th Asian Rock Mechanics Symposium, Singapore, 2006.
      [2]
      P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
      [3]
      P. Li, M.F. Cai, Q.F. Guo, and S.J. Miao, Characteristics and implications of stress state in a gold mine in Ludong area, China, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1363. doi: 10.1007/s12613-018-1690-8
      [4]
      J. Haddad, J. Ramos, and M. Aldana, In-situ stress constrain: A geomechanics study to evaluate the influence of the structural geology, [in] SPE Latin America and Caribbean Petroleum Engineering Conference, Maracaibo, 2014.
      [5]
      Z.Y. Tan and M.F. Cai, Measurement and study of the distributing law of in situ stresses in rock mass at great depth, J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 13(2006), No. 3, p. 207. doi: 10.1016/S1005-8850(06)60044-3
      [6]
      T. Tokiwa, K. Tsusaka, E. Ishii, et al., Influence of a fault system on rock mass response to shaft excavation in soft sedimentary rock, Horonobe area, northern Japan, Int. J. Rock Mech. Min. Sci., 48(2011), No. 5, p. 773. doi: 10.1016/j.ijrmms.2011.04.007
      [7]
      D.P. Yale, Fault and stress magnitude controls on variations in the orientation of in situ stress, [in] M. Ameen, ed., Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs, Geological Society, London, 2003, p. 55.
      [8]
      P.A.J. van den Bogert and R.M.H.E. van Eijs, Why Mohr-circle analyses may underestimate the risk of fault reactivation in depleting reservoirs, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104502. doi: 10.1016/j.ijrmms.2020.104502
      [9]
      Q. Jiang, G.S. Su, X.T. Feng, G.Q. Chen, M.Z. Zhang, and C. Liu, Excavation optimization and stability analysis for large underground caverns under high geostress: A case study of the Chinese Laxiwa Project, Rock Mech. Rock Eng., 52(2019), No. 3, p. 895. doi: 10.1007/s00603-018-1605-z
      [10]
      X.H. Qin, Q.C. Chen, M.L. Wu, C.X. Tan, C.J. Feng, and W. Meng, In-situ stress measurements along the Beichuan-Yingxiu fault after the Wenchuan earthquake, Eng. Geol., 194(2015), p. 114. doi: 10.1016/j.enggeo.2015.04.029
      [11]
      Z.B. Guo, Y.L. Jiang, J.W. Pang, and J.W. Liu, Distribution of ground stress on Puhe Coal Mine, Int. J. Min. Sci. Technol., 23(2013), No. 1, p. 139. doi: 10.1016/j.ijmst.2013.03.004
      [12]
      Z.Q. Sun and J.H. Zhang, Variation of in-situ stresses before and after occurrence of geologic fault structure, Chin. J. Rock Mech. Eng., 23(2004), No. 23, p. 3964.
      [13]
      C.D. Chang, J.B. Lee, and T.S. Kang, Interaction between regional stress state and faults: Complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea, Tectonophysics, 485(2010), No. 1-4, p. 164. doi: 10.1016/j.tecto.2009.12.012
      [14]
      J.P. Liu, Z.S. Liu, S.Q. Wang, C.Y. Shi, and Y.H. Li, Analysis of microseismic activity in rock mass controlled by fault in deep metal mine, Int. J. Min. Sci. Technol., 26(2016), No. 2, p. 235. doi: 10.1016/j.ijmst.2015.12.008
      [15]
      C.Q. Zhang, X.T. Feng, and H. Zhou, Estimation of in situ stress along deep tunnels buried in complex geological conditions, Int. J. Rock Mech. Min. Sci., 52(2012), p. 139. doi: 10.1016/j.ijrmms.2012.03.016
      [16]
      J. Rutqvist, B. Graupner, Y. Guglielmi, et al., An international model comparison study of controlled fault activation experiments in argillaceous claystone at the Mont Terri Laboratory, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104505. doi: 10.1016/j.ijrmms.2020.104505
      [17]
      Y. Ju, C.B. Wan, Z.Y. Ren, L.T. Mao, G.M. Fu, and F.P. Chiang, Quantification of continuous evolution of full-field stress associated with shear deformation of faults using three-dimensional printing and phase-shifting methods, Int. J. Rock Mech. Min. Sci., 126(2020), art. No. 104187. doi: 10.1016/j.ijrmms.2019.104187
      [18]
      L.R. Alejano, U. Castro-Filgueira, A.M. Ferrero, M. Migliazza, and F. Vagnon, In situ stress measurement near fault and interpretation by means of discrete element modelling, Acta Geodyn. Geomater., 14(2017), No. 2, p. 181.
      [19]
      R. Chatterjee, Effect of normal faulting on in-situ stress: A case study from Mandapeta Field, Krishna-Godavari basin, India, Earth Planet. Sci. Lett., 269(2008), No. 3-4, p. 458. doi: 10.1016/j.jpgl.2008.02.040
      [20]
      P. Jeanne, J. Rutqvist, H.M. Wainwright, et al., Effects of in situ stress measurement uncertainties on assessment of predicted seismic activity and risk associated with a hypothetical industrial-scale geologic CO2 sequestration operation, J. Rock Mech. Geotech. Eng., 8(2016), No. 6, p. 873. doi: 10.1016/j.jrmge.2016.06.008
      [21]
      K. Matsuki, S. Nakama, and T. Sato, Estimation of regional stress by FEM for a heterogeneous rock mass with a large fault, Int. J. Rock Mech. Min. Sci., 46(2009), No. 1, p. 31. doi: 10.1016/j.ijrmms.2008.03.005
      [22]
      S. Yin, R.C. Xie, Z.H. Wu, J. Liu, and W.L. Ding, In situ stress heterogeneity in a highly developed strike-slip fault zone and its effect on the distribution of tight gases: A 3D finite element simulation study, Mar. Pet. Geol., 99(2019), p. 75. doi: 10.1016/j.marpetgeo.2018.10.007
      [23]
      B.T. Shen, Y. Duan, X. Luo, et al., Monitoring and modelling stress state near major geological structures in an underground coal mine for coal burst assessment, Int. J. Rock Mech. Min. Sci., 129(2020), art. No. 104294. doi: 10.1016/j.ijrmms.2020.104294
      [24]
      C.H. Wang, C.K. Song, Q.L. Guo, J.Z. Mao, and Y.S. Zhang, New insights into stress changes before and after the Wenchuan Earthquake using hydraulic fracturing measurements, Eng. Geol., 194(2015), p. 98. doi: 10.1016/j.enggeo.2015.05.016
      [25]
      P. Zhang, Z.P. Meng, S. Jiang, and X.M. Chen, Characteristics of in-situ stress distribution in Zhengzhuang Region, Southern Qinshui Basin, China and its stress path during depletion, Eng. Geol., 264(2020), art. No. 105413. doi: 10.1016/j.enggeo.2019.105413
      [26]
      S.X. Deng, J. Li, H.M. Jiang, and M.Y. Wang, Experimental and theoretical study of the fault slip events of rock masses around underground tunnels induced by external disturbances, Eng. Geol., 233(2018), p. 191. doi: 10.1016/j.enggeo.2017.12.007
      [27]
      E. Paltrinieri, F. Sandrone, and J. Zhao, Analysis and estimation of gripper TBM performances in highly fractured and faulted rocks, Tunn. Undergr. Space Technol., 52(2016), p. 44. doi: 10.1016/j.tust.2015.11.017
      [28]
      A. Sainoki and H.S. Mitri, Dynamic behaviour of mining-induced fault slip, Int. J. Rock Mech. Min. Sci., 66(2014), p. 19. doi: 10.1016/j.ijrmms.2013.12.003

    Catalog


    • /

      返回文章
      返回