留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(10)

数据统计

分享

计量
  • 文章访问数:  860
  • HTML全文浏览量:  235
  • PDF下载量:  46
  • 被引次数: 0
Mengchen Song, Runkai Xie, Liuting Zhang, Xuan Wang, Zhendong Yao, Tao Wei, and Danhong Shang, Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 970-976. https://doi.org/10.1007/s12613-022-2529-x
Cite this article as:
Mengchen Song, Runkai Xie, Liuting Zhang, Xuan Wang, Zhendong Yao, Tao Wei, and Danhong Shang, Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 970-976. https://doi.org/10.1007/s12613-022-2529-x
引用本文 PDF XML SpringerLink
研究论文

铈镍合金的“氢通道”和“氢溢出”效应协同改善氢化镁的储氢性能


  • 通讯作者:

    张刘挺    E-mail: zhanglt89@just.edu.cn

    姚振东    E-mail: zhendongyao@foxmail.com

    商丹红    E-mail: dhshang@just.edu.cn

文章亮点

  • (1) 通过悬浮熔炼法成功制备出CeNi5合金,并借助氢化以及湿化学球磨方法增强其催化剂活性。
  • (2) CeNi5的添加有效降低了MgH2的吸放氢反应活化能,从而加速其吸放氢速率。
  • (3) CeNi5对MgH2的催化活性归因于Mg2Ni/Mg2NiH4的“氢通道”和CeH2.73的“氢溢流”效应。
  • 氢化镁(MgH2)因其储氢容量高(7.6wt%)、资源丰富、可逆性好等优势而在能源材料的开发方面得到了越来越多的关注。然而,MgH2较强的金属–氢键导致其吸放氢反应动力学缓慢、热力学稳定性过高,难以获得广泛的实际应用。本文成功设计并合成了CeNi5合金,有效改善了MgH2的储氢性能。研究结果表明,氢化以及湿化学球磨处理后的CeNi5 合金呈现片层状结构,MgH2–CeNi5复合材料中CeNi5含量的增加可以有效地降低MgH2的起始放氢温度。 MgH2–5wt%CeNi5复合材料的初始放氢温度为174°C,比纯MgH2的放氢温度降低了156°C。复合体系在275℃的温度下,10分钟内释放出约6.4wt%的H2。此外,完全脱氢的样品在175℃的低温下吸收了4.8wt%的H2,并且吸氢过程的表观活化能从(73.60 ± 1.79)下降到(46.12 ± 7.33) kJ/mol。微观结构分析表明,原位生成的Mg2Ni/Mg2NiH4和CeH2.73分别展现出“氢通道”和 “氢溢流”效应,从而有效增强了MgH2–5wt%CeNi5复合材料的储氢性能。
  • Research Article

    Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2

    + Author Affiliations
    • Efficient catalysts enable MgH2 with superior hydrogen storage performance. Herein, we successfully synthesized a catalyst composed of Ce and Ni (i.e. CeNi5 alloy) with splendid catalytic action for boosting the hydrogen storage property of magnesium hydride (MgH2). The MgH2–5wt%CeNi5 composite’s initial hydrogen release temperature was reduced to 174°C and approximately 6.4wt% H2 was released at 275°C within 10 min. Besides, the dehydrogenation enthalpy of MgH2 was slightly decreased by adding CeNi5. For hydrogenation, the fully dehydrogenated sample absorbed 4.8wt% H2 at a low temperature of 175°C. The hydrogenation apparent activation energy was decreased from (73.60 ± 1.79) to (46.12 ± 7.33) kJ/mol. Microstructure analysis revealed that Mg2Ni/Mg2NiH4 and CeH2.73 were formed during the process of hydrogen absorption and desorption, exerted combined “Gateway” and “Spillover” effects to reduce the operating temperature and improve the hydrogen storage kinetics of MgH2. Our work provides an example of merging “Gateway” and “Spillover” effects in one catalyst and may shed light on designing novel highly-effective catalysts for MgH2 in near future.
    • loading
    • [1]
      T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059. doi: 10.1038/natrevmats.2016.59
      [2]
      Q.W. Lai, M. Paskevicius, D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789. doi: 10.1002/cssc.201500231
      [3]
      S.Y. Lee, J.H. Lee, Y.H. Kim, J.W. Kim, K.J. Lee, and S.J.Park, Recent progress using solid-state materials for hydrogen storage: A short review, Processes, 10(2022), No. 2, art. No. 304. doi: 10.3390/pr10020304
      [4]
      H.J. Lin, Y.S. Lu, L.T. Zhang, H.Z. Liu, K. Edalati, and Á. Révész, Recent advances in metastable alloys for hydrogen storage: A review, Rare Met., 41(2022), No. 6, p. 1797. doi: 10.1007/s12598-021-01917-8
      [5]
      J.A. Bolarin, Z. Zhang, H. Cao, Z. Li, T. He, and P. Chen, Room temperature hydrogen absorption of Mg/MgH2 catalyzed by BaTiO3, J. Phys. Chem. C, 125(2021), No. 36, p. 19631. doi: 10.1021/acs.jpcc.1c05560
      [6]
      I.P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrog. Energy, 34(2009), No. 17, p. 7368. doi: 10.1016/j.ijhydene.2009.05.093
      [7]
      Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
      [8]
      Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
      [9]
      J. Cermak, L. Kral, and P. Roupcova, Significantly decreased stability of MgH2 in the Mg–In–C alloy system: Long-period-stacking-ordering as a new way how to improve performance of hydrogen storage alloys? Renewable Energy, 150(2020), p. 204. doi: 10.1016/j.renene.2019.12.107
      [10]
      H.G. Gao, S. Rui, J.L. Zhu, et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2, Appl. Surf. Sci., 564(2021), art. No. 150302. doi: 10.1016/j.apsusc.2021.150302
      [11]
      L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146. doi: 10.1039/D0DT00230E
      [12]
      Y.S. Lu, H. Wang, J.W. Liu, L.Z. Ouyang, and M. Zhu, Destabilizing the dehydriding thermodynamics of MgH2 by reversible intermetallics formation in Mg–Ag–Zn ternary alloys, J. Power Sources, 396(2018), p. 796. doi: 10.1016/j.jpowsour.2018.06.060
      [13]
      C. Peng, Y.T. Li, and Q.G. Zhang, Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in situ hydrogenolysis of nickelocene in ball milling process, J. Alloys Compd., 900(2022), art. No. 163547. doi: 10.1016/j.jallcom.2021.163547
      [14]
      C. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178. doi: 10.1016/j.jmst.2020.01.063
      [15]
      Q.Y. Zhang, Y.K. Huang, L. Xu, et al., Highly dispersed MgH2 nanoparticle-graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828. doi: 10.1021/acsanm.9b00694
      [16]
      J.N. Chen, J. Zhang, J.H. He, et al., A comparative study on hydrogen storage properties of as-cast and extruded Mg–4.7Y–4.1Nd–0.5Zr alloys, J. Phys. Chem. Solids, 161(2022), art. No. 110483. doi: 10.1016/j.jpcs.2021.110483
      [17]
      Y. Fu, Z. Ding, L. Zhang, et al., Catalytic effect of a novel MgC0.5Co3 compound on the dehydrogenation of MgH2, Prog. Nat. Sci. Mater. Int., 31(2021), No. 2, p. 264. doi: 10.1016/j.pnsc.2021.01.009
      [18]
      X. Lu, L.T. Zhang, J.G. Zheng, and X.B. Yu, Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage, J. Alloys Compd., 905(2022), art. No. 164169. doi: 10.1016/j.jallcom.2022.164169
      [19]
      T.H. Huang, X. Huang, C.Z. Hu, et al., MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2, Chem. Eng. J., 421(2021), art. No. 127851. doi: 10.1016/j.cej.2020.127851
      [20]
      S. Ren, Y. Fu, L. Zhang, et al., An improved hydrogen storage performance of MgH2 enabled by core–shell structure Ni/Fe3O4@MIL, J. Alloys Compd., 892(2022), art. No. 162048. doi: 10.1016/j.jallcom.2021.162048
      [21]
      Y. Chen, H.Y. Zhang, F.Y. Wu, et al., Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3469. doi: 10.1016/S1003-6326(21)65743-6
      [22]
      Z. Liang, Z. Yao, X. Xiao, et al., Positive impacts of tuning lattice on cyclic performance in ZrCo-based hydrogen isotope storage alloys, Mater. Today Energy, 20(2021), art. No. 100645. doi: 10.1016/j.mtener.2021.100645
      [23]
      W. Chen, S.L. Ju, Y.H. Sun, et al., Thermodynamically favored stable hydrogen storage reversibility of NaBH4 inside of bimetallic nanoporous carbon nanosheets, J. Mater. Chem. A, 10(2022), No. 13, p. 7122. doi: 10.1039/D1TA10361J
      [24]
      T. Huang, X. Huang, C. Hu, et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy, 19(2021), art. No. 100613. doi: 10.1016/j.mtener.2020.100613
      [25]
      G. Liang, J. Huot, S. Boily, A. van Neste, and R.Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292(1999), No. 1-2, p. 247. doi: 10.1016/S0925-8388(99)00442-9
      [26]
      L. Xie, Y. Liu, X.Z. Zhang, J.L. Qu, Y.T. Wang, and X.G. Li, Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1-2, p. 388. doi: 10.1016/j.jallcom.2009.04.028
      [27]
      B. Zhang, Y.J. Lv, J.G. Yuan, and Y. Wu, Effects of microstructure on the hydrogen storage properties of the melt-spun Mg–5Ni–3La (at.%) alloys, J. Alloys Compd., 702(2017), p. 126. doi: 10.1016/j.jallcom.2017.01.221
      [28]
      H.W. Zhang, X.Y. Zheng, X. Tian, Y. Liu, and X.G. Li, New approaches for rare earth–magnesium based hydrogen storage alloys, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 50. doi: 10.1016/j.pnsc.2016.12.011
      [29]
      Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, and Y.H. Zhang, Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy, Int. J. Hydrogen Energy, 41(2016), No. 14, p. 5994. doi: 10.1016/j.ijhydene.2016.02.108
      [30]
      Y.H. Zhang, L.W. Li, D.C. Feng, P.F. Gong, H.W. Shang, and S.H. Guo, Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg 12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551. doi: 10.1016/S1003-6326(17)60061-X
      [31]
      X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4–Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423. doi: 10.1007/s12613-015-1089-8
      [32]
      H.J. Lin, J.J. Tang, Q. Yu, et al., Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy, 9(2014), p. 80. doi: 10.1016/j.nanoen.2014.06.026
      [33]
      L.T. Zhang, Z.L. Cai, Z.D. Yao, et al., A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626. doi: 10.1039/C9TA00120D
      [34]
      Y. Ye, Y. Yue, J.F. Lu, J. Ding, W. Wang, and J. Yan, Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials, Renewable Energy, 180(2021), p. 734. doi: 10.1016/j.renene.2021.08.118
      [35]
      E. Grigorova, P. Tzvetkov, S. Todorova, P. Markov, and T. Spassov, Facilitated synthesis of Mg2Ni based composites with attractive hydrogen sorption properties, Materials, 14(2021), No. 8, art. No. 1936. doi: 10.3390/ma14081936
      [36]
      J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229. doi: 10.1016/j.renene.2020.03.089
      [37]
      S.N. Klyamkin and N.S.Zakharkina, Hysteresis and related irreversible phenomena in CeNi5-based intermetallic hydrides, J. Alloys Compd., 361(2003), No. 1-2, p. 200. doi: 10.1016/S0925-8388(03)00438-9
      [38]
      X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), No. 17, art. No. 130101. doi: 10.1016/j.cej.2021.130101
      [39]
      N.H. Vasoya, L.H. Vanpariya, P.N. Sakariya, et al., Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4, Ceram. Int., 36(2010), No. 3, p. 947. doi: 10.1016/j.ceramint.2009.10.024
      [40]
      J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647. doi: 10.1016/j.jma.2020.02.029
      [41]
      Y.T. Shao, H.G. Gao, Q.K. Tang, et al., Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2, Appl. Surf. Sci., 585(2022), art. No. 152561. doi: 10.1016/j.apsusc.2022.152561
      [42]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [43]
      J.C. Fuggle, F.U. Hillebrecht, Z. Zołnierek, et al., Electronic structure of Ce and its intermetallic compounds, Phys. Rev. B, 27(1983), No. 12, p. 7330. doi: 10.1103/PhysRevB.27.7330
      [44]
      T.L. Barr, C.G. Fries, F. Cariati, J.C.J. Bart, and N. Giordano, A spectroscopic investigation of cerium molybdenum oxides, J. Chem. Soc., Dalton Trans., 1983, No. 9, p. 1825.
      [45]
      L.H. Xie, J.S. Li, T.B. Zhang, and L. Song, Dehydrogenation steps and factors controlling desorption kinetics of a MgCe hydrogen storage alloy, Int. J. Hydrogen Energy, 42(2017), No. 33, p. 21121. doi: 10.1016/j.ijhydene.2017.07.046
      [46]
      G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
      [47]
      V.A. Yartys, O. Gutfleisch, V.V. Panasyuk, and I.R.Harris, Desorption characteristics of rare earth (R) hydrides (R = Y, Ce, Pr, Nd, Sm, Gd and Tb) in relation to the HDDR behaviour of R–Fe-based-compounds, J. Alloys Compd., 253-254(1997), p. 128. doi: 10.1016/S0925-8388(96)03097-6
      [48]
      C. Ren, Z.Z. Fang, C.S. Zhou, et al., In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives, Int. J. Hydrogen Energy, 39(2014), No. 11, p. 5868. doi: 10.1016/j.ijhydene.2014.01.152

    Catalog


    • /

      返回文章
      返回