Cite this article as: |
Mengchen Song, Runkai Xie, Liuting Zhang, Xuan Wang, Zhendong Yao, Tao Wei, and Danhong Shang, Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 970-976. https://doi.org/10.1007/s12613-022-2529-x |
张刘挺 E-mail: zhanglt89@just.edu.cn
姚振东 E-mail: zhendongyao@foxmail.com
商丹红 E-mail: dhshang@just.edu.cn
[1] |
T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059. doi: 10.1038/natrevmats.2016.59
|
[2] |
Q.W. Lai, M. Paskevicius, D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789. doi: 10.1002/cssc.201500231
|
[3] |
S.Y. Lee, J.H. Lee, Y.H. Kim, J.W. Kim, K.J. Lee, and S.J.Park, Recent progress using solid-state materials for hydrogen storage: A short review, Processes, 10(2022), No. 2, art. No. 304. doi: 10.3390/pr10020304
|
[4] |
H.J. Lin, Y.S. Lu, L.T. Zhang, H.Z. Liu, K. Edalati, and Á. Révész, Recent advances in metastable alloys for hydrogen storage: A review, Rare Met., 41(2022), No. 6, p. 1797. doi: 10.1007/s12598-021-01917-8
|
[5] |
J.A. Bolarin, Z. Zhang, H. Cao, Z. Li, T. He, and P. Chen, Room temperature hydrogen absorption of Mg/MgH2 catalyzed by BaTiO3, J. Phys. Chem. C, 125(2021), No. 36, p. 19631. doi: 10.1021/acs.jpcc.1c05560
|
[6] |
I.P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrog. Energy, 34(2009), No. 17, p. 7368. doi: 10.1016/j.ijhydene.2009.05.093
|
[7] |
Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
|
[8] |
Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
|
[9] |
J. Cermak, L. Kral, and P. Roupcova, Significantly decreased stability of MgH2 in the Mg–In–C alloy system: Long-period-stacking-ordering as a new way how to improve performance of hydrogen storage alloys? Renewable Energy, 150(2020), p. 204. doi: 10.1016/j.renene.2019.12.107
|
[10] |
H.G. Gao, S. Rui, J.L. Zhu, et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2, Appl. Surf. Sci., 564(2021), art. No. 150302. doi: 10.1016/j.apsusc.2021.150302
|
[11] |
L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146. doi: 10.1039/D0DT00230E
|
[12] |
Y.S. Lu, H. Wang, J.W. Liu, L.Z. Ouyang, and M. Zhu, Destabilizing the dehydriding thermodynamics of MgH2 by reversible intermetallics formation in Mg–Ag–Zn ternary alloys, J. Power Sources, 396(2018), p. 796. doi: 10.1016/j.jpowsour.2018.06.060
|
[13] |
C. Peng, Y.T. Li, and Q.G. Zhang, Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in situ hydrogenolysis of nickelocene in ball milling process, J. Alloys Compd., 900(2022), art. No. 163547. doi: 10.1016/j.jallcom.2021.163547
|
[14] |
C. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178. doi: 10.1016/j.jmst.2020.01.063
|
[15] |
Q.Y. Zhang, Y.K. Huang, L. Xu, et al., Highly dispersed MgH2 nanoparticle-graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828. doi: 10.1021/acsanm.9b00694
|
[16] |
J.N. Chen, J. Zhang, J.H. He, et al., A comparative study on hydrogen storage properties of as-cast and extruded Mg–4.7Y–4.1Nd–0.5Zr alloys, J. Phys. Chem. Solids, 161(2022), art. No. 110483. doi: 10.1016/j.jpcs.2021.110483
|
[17] |
Y. Fu, Z. Ding, L. Zhang, et al., Catalytic effect of a novel MgC0.5Co3 compound on the dehydrogenation of MgH2, Prog. Nat. Sci. Mater. Int., 31(2021), No. 2, p. 264. doi: 10.1016/j.pnsc.2021.01.009
|
[18] |
X. Lu, L.T. Zhang, J.G. Zheng, and X.B. Yu, Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage, J. Alloys Compd., 905(2022), art. No. 164169. doi: 10.1016/j.jallcom.2022.164169
|
[19] |
T.H. Huang, X. Huang, C.Z. Hu, et al., MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2, Chem. Eng. J., 421(2021), art. No. 127851. doi: 10.1016/j.cej.2020.127851
|
[20] |
S. Ren, Y. Fu, L. Zhang, et al., An improved hydrogen storage performance of MgH2 enabled by core–shell structure Ni/Fe3O4@MIL, J. Alloys Compd., 892(2022), art. No. 162048. doi: 10.1016/j.jallcom.2021.162048
|
[21] |
Y. Chen, H.Y. Zhang, F.Y. Wu, et al., Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3469. doi: 10.1016/S1003-6326(21)65743-6
|
[22] |
Z. Liang, Z. Yao, X. Xiao, et al., Positive impacts of tuning lattice on cyclic performance in ZrCo-based hydrogen isotope storage alloys, Mater. Today Energy, 20(2021), art. No. 100645. doi: 10.1016/j.mtener.2021.100645
|
[23] |
W. Chen, S.L. Ju, Y.H. Sun, et al., Thermodynamically favored stable hydrogen storage reversibility of NaBH4 inside of bimetallic nanoporous carbon nanosheets, J. Mater. Chem. A, 10(2022), No. 13, p. 7122. doi: 10.1039/D1TA10361J
|
[24] |
T. Huang, X. Huang, C. Hu, et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy, 19(2021), art. No. 100613. doi: 10.1016/j.mtener.2020.100613
|
[25] |
G. Liang, J. Huot, S. Boily, A. van Neste, and R.Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292(1999), No. 1-2, p. 247. doi: 10.1016/S0925-8388(99)00442-9
|
[26] |
L. Xie, Y. Liu, X.Z. Zhang, J.L. Qu, Y.T. Wang, and X.G. Li, Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1-2, p. 388. doi: 10.1016/j.jallcom.2009.04.028
|
[27] |
B. Zhang, Y.J. Lv, J.G. Yuan, and Y. Wu, Effects of microstructure on the hydrogen storage properties of the melt-spun Mg–5Ni–3La (at.%) alloys, J. Alloys Compd., 702(2017), p. 126. doi: 10.1016/j.jallcom.2017.01.221
|
[28] |
H.W. Zhang, X.Y. Zheng, X. Tian, Y. Liu, and X.G. Li, New approaches for rare earth–magnesium based hydrogen storage alloys, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 50. doi: 10.1016/j.pnsc.2016.12.011
|
[29] |
Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, and Y.H. Zhang, Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy, Int. J. Hydrogen Energy, 41(2016), No. 14, p. 5994. doi: 10.1016/j.ijhydene.2016.02.108
|
[30] |
Y.H. Zhang, L.W. Li, D.C. Feng, P.F. Gong, H.W. Shang, and S.H. Guo, Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg 12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551. doi: 10.1016/S1003-6326(17)60061-X
|
[31] |
X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4–Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423. doi: 10.1007/s12613-015-1089-8
|
[32] |
H.J. Lin, J.J. Tang, Q. Yu, et al., Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy, 9(2014), p. 80. doi: 10.1016/j.nanoen.2014.06.026
|
[33] |
L.T. Zhang, Z.L. Cai, Z.D. Yao, et al., A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626. doi: 10.1039/C9TA00120D
|
[34] |
Y. Ye, Y. Yue, J.F. Lu, J. Ding, W. Wang, and J. Yan, Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials, Renewable Energy, 180(2021), p. 734. doi: 10.1016/j.renene.2021.08.118
|
[35] |
E. Grigorova, P. Tzvetkov, S. Todorova, P. Markov, and T. Spassov, Facilitated synthesis of Mg2Ni based composites with attractive hydrogen sorption properties, Materials, 14(2021), No. 8, art. No. 1936. doi: 10.3390/ma14081936
|
[36] |
J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229. doi: 10.1016/j.renene.2020.03.089
|
[37] |
S.N. Klyamkin and N.S.Zakharkina, Hysteresis and related irreversible phenomena in CeNi5-based intermetallic hydrides, J. Alloys Compd., 361(2003), No. 1-2, p. 200. doi: 10.1016/S0925-8388(03)00438-9
|
[38] |
X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), No. 17, art. No. 130101. doi: 10.1016/j.cej.2021.130101
|
[39] |
N.H. Vasoya, L.H. Vanpariya, P.N. Sakariya, et al., Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4, Ceram. Int., 36(2010), No. 3, p. 947. doi: 10.1016/j.ceramint.2009.10.024
|
[40] |
J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647. doi: 10.1016/j.jma.2020.02.029
|
[41] |
Y.T. Shao, H.G. Gao, Q.K. Tang, et al., Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2, Appl. Surf. Sci., 585(2022), art. No. 152561. doi: 10.1016/j.apsusc.2022.152561
|
[42] |
Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
|
[43] |
J.C. Fuggle, F.U. Hillebrecht, Z. Zołnierek, et al., Electronic structure of Ce and its intermetallic compounds, Phys. Rev. B, 27(1983), No. 12, p. 7330. doi: 10.1103/PhysRevB.27.7330
|
[44] |
T.L. Barr, C.G. Fries, F. Cariati, J.C.J. Bart, and N. Giordano, A spectroscopic investigation of cerium molybdenum oxides, J. Chem. Soc., Dalton Trans., 1983, No. 9, p. 1825.
|
[45] |
L.H. Xie, J.S. Li, T.B. Zhang, and L. Song, Dehydrogenation steps and factors controlling desorption kinetics of a MgCe hydrogen storage alloy, Int. J. Hydrogen Energy, 42(2017), No. 33, p. 21121. doi: 10.1016/j.ijhydene.2017.07.046
|
[46] |
G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
|
[47] |
V.A. Yartys, O. Gutfleisch, V.V. Panasyuk, and I.R.Harris, Desorption characteristics of rare earth (R) hydrides (R = Y, Ce, Pr, Nd, Sm, Gd and Tb) in relation to the HDDR behaviour of R–Fe-based-compounds, J. Alloys Compd., 253-254(1997), p. 128. doi: 10.1016/S0925-8388(96)03097-6
|
[48] |
C. Ren, Z.Z. Fang, C.S. Zhou, et al., In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives, Int. J. Hydrogen Energy, 39(2014), No. 11, p. 5868. doi: 10.1016/j.ijhydene.2014.01.152
|