留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  526
  • HTML全文浏览量:  223
  • PDF下载量:  49
  • 被引次数: 0
Guomin Li, Xiaojie Xue, Lutao Mao, Yake Wang, Lingxiao Li, Guizhen Wang, Kewei Zhang, Rong Zhang, Yuexiang Wang, and Liping Liang, Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 591-599. https://doi.org/10.1007/s12613-022-2534-0
Cite this article as:
Guomin Li, Xiaojie Xue, Lutao Mao, Yake Wang, Lingxiao Li, Guizhen Wang, Kewei Zhang, Rong Zhang, Yuexiang Wang, and Liping Liang, Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 591-599. https://doi.org/10.1007/s12613-022-2534-0
引用本文 PDF XML SpringerLink
研究论文

回收利用煤气化残渣制备新型微Fe/C复合微波吸收材料

  • 通讯作者:

    力国民    E-mail: ligm@tyust.edu.cn

    王桂振    E-mail: wangguizhen0@hotmail.com

文章亮点

  • (1) 研究了利用煤气化残渣制备Fe/CGR复合材料的实验过程及微观反应机理。
  • (2) 探究了磁性组分Fe的负载量对Fe/CGR复合材料的形貌和吸波性能的影响规律。
  • (3) 阐明了Fe/CGR复合材料对电磁波的吸收与损耗机理。
  • 在全球能源结构转型的背景下,煤气化技术展现出广阔应用前景,但其副产品煤气化残渣(CGR)仍未得到有效的回收利用。煤气化残渣含有丰富的碳成分,因此可以考虑作为碳基载体应用于微波吸收领域。在本研究中,通过浸渍Fe3+和还原反应制备了Fe/CGR复合微波吸收材料,并研究了磁性组分Fe的负载量对复合材料形貌和电磁性能的影响。此外,调整硝酸铁溶液的浓度,可以合理调控Fe/CGR复合材料的磁性成分负载量及其表面结构形貌。从扫描电镜照片可以看到Fe颗粒均匀地嵌入在CGR基体上,有效增加了复合材料的界面,进而增强了界面极化,进一步提高了复合材料的微波吸收性能。当Fe3+浓度为1.0 mol/L时,Fe/CGR复合材料表现出了优异的吸波性能,在涂覆厚度为2.5 mm时,最小反射损耗值可达−39.3 dB,当涂覆厚度为1.5 mm时对应的有效吸收带宽高达到4.1 GHz。本研究最终获得了兼具阻抗匹配和吸波性能的材料简易制备工艺与资源回收利用方法,所制备的Fe/CGR复合吸波材料不仅提升了CGR的回收率,而且也为微波吸收材料的合成开辟了一条新途径。
  • Research Article

    Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents

    + Author Affiliations
    • Under the background of a transformation of the global energy structure, coal gasification technology has a wide application prospect, but its by-product, the coal gasification residue (CGR), is still not being efficiently utilized for recycling. The CGR contains abundant carbon components, which could be applied to the microwave absorption field as the carbon matrix. In this study, Fe/CGR composites are fabricated via a two-step method, including the impregnation of Fe3+ and the reduction process. The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied. Moreover, the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution. Meanwhile, Fe particles are evenly inserted on the CGR framework, which expands the Fe/CGR interfaces to enhance interfacial polarization, thus further improving the microwave-absorbing (MA) properties of composites. Particularly, as the Fe3+ concentration is 1.0 mol/L, the Fe/CGR composite exhibits outstanding performance. The reflection loss reaches −39.3 dB at 2.5 mm, and the absorption bandwidth covers 4.1 GHz at 1.5 mm. In this study, facile processability, resource recycling, appropriately matched impedance, and excellent MA performance are achieved. Finally, the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.
    • loading
    • Supplementary InformationsIJM-05-2022-0474.docx
    • [1]
      L.H. Wu, X. Liu, G.P. Wan, et al., Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers, Chem. Eng. J., 448(2022), art. No. 137600. doi: 10.1016/j.cej.2022.137600
      [2]
      H.M. Kuo, T.F. Hsui, Y.S. Tuo, and C.L. Yuan, Microwave adsorption of core–shell structured Sr(MnTi)xFe12−2xO19/PANI composites, J. Mater. Sci., 47(2012), No. 5, p. 2264. doi: 10.1007/s10853-011-6038-y
      [3]
      C.X. Wang, B.B. Wang, X. Cao, et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption, Composites Part B, 205(2021), art. No. 108529. doi: 10.1016/j.compositesb.2020.108529
      [4]
      M. Ma, Q. Zheng, Y.H. Zhu, L. Li, and M.S. Cao, Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption, J. Materiomics, 8(2022), No. 3, p. 577. doi: 10.1016/j.jmat.2021.12.003
      [5]
      Z.C. Wu, C. Jin, Z.Q. Yang, and R.C. Che, Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance, Carbon, 189(2022), p. 530. doi: 10.1016/j.carbon.2021.12.073
      [6]
      M.F. Zhou, X.F. Xu, G.P. Wan, P.P. Mou, S.J. Teng, and G.Z. Wang, Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers, Nano Res., 15(2022), No. 10, p. 8677. doi: 10.1007/s12274-022-4521-1
      [7]
      X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, and X.M. Wu, Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption, Carbon, 179(2021), p. 566. doi: 10.1016/j.carbon.2021.04.050
      [8]
      R.R. Cheng, Y. Wang, X.C. Di, et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 224. doi: 10.1016/j.jcis.2021.11.197
      [9]
      H.R. Geng, X. Zhang, W.H. Xie, et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 33. doi: 10.1016/j.jcis.2021.11.192
      [10]
      X.L. Chen, W. Wang, T. Shi, G.L. Wu, and Y. Lu, One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles, Carbon, 163(2020), p. 202. doi: 10.1016/j.carbon.2020.03.005
      [11]
      P.B. Liu, Y. Wang, G.Z. Zhang, et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction, Adv. Funct. Mater., 32(2022), No. 33, art. No. 2202588. doi: 10.1002/adfm.202202588
      [12]
      Y. Fan, J.Y. Wang, X.M. Zhang, et al., Coal-based carbon/FeCo magnetic composites with layered stripes as novel light-weight microwave absorber, Diam. Relat. Mater., 120(2021), art. No. 108685. doi: 10.1016/j.diamond.2021.108685
      [13]
      B.C. Wang, Y. Zhang, Y. Yang, et al., Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber, J. Alloys Compd., 838(2020), art. No. 155586. doi: 10.1016/j.jallcom.2020.155586
      [14]
      R.W. Shu, Y. Wu, X.H. Li, N.N. Li, and J.J. Shi, Fabrication of bimetallic metal–organic frameworks derived cobalt iron alloy@carbon–carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers, J. Colloid Interface Sci., 613(2022), p. 477. doi: 10.1016/j.jcis.2022.01.063
      [15]
      Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal–organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404. doi: 10.1016/j.carbon.2021.11.027
      [16]
      L. Wu, A. Mendoza-Garcia, Q. Li, and S.H. Sun, Organic phase syntheses of magnetic nanoparticles and their applications, Chem. Rev., 116(2016), No. 18, p. 10473. doi: 10.1021/acs.chemrev.5b00687
      [17]
      S.Q. Gu, Z.Q. Xu, Y.G. Ren, Z.F. Chai, and Y.X. Zhang, Effect of lignite semi-coke on lignite microwave upgrade and its slurryability, Energy Sources Part A, 2019. DOI: 10.1080/15567036.2019.1673852
      [18]
      P.Q. Wang, C.A. Wang, C.W. Wang, et al., Synergistic effects in rapid co-pyrolysis of semi-coke and coal at high temperature, Fuel, 282(2020), art. No. 118795. doi: 10.1016/j.fuel.2020.118795
      [19]
      B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Synthesis and microwave absorption properties of Fe-loaded fly ash-based ceramic composites, ACS Appl. Electron. Mater., 2(2020), No. 10, p. 3307. doi: 10.1021/acsaelm.0c00630
      [20]
      B.S. Zhu, Y.Y. Li, Y.M. Tian, et al., Rational design of FeCo/C/FA by recycling of fly ash for electromagnetic pollution, Colloids Surf. A, 627(2021), art. No. 127127. doi: 10.1016/j.colsurfa.2021.127127
      [21]
      G.M. Li, L.T. Mao, B.S. Zhu, et al., Novel ceramic-based microwave absorbents derived from gangue, J. Mater. Chem. C, 8(2020), No. 40, p. 14238. doi: 10.1039/D0TC03633A
      [22]
      L. Wang, B. Wen, H.B. Yang, Y. Qiu, and N.R. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber, Composites Part A, 135(2020), art. No. 105958. doi: 10.1016/j.compositesa.2020.105958
      [23]
      S.F. Yuan, X. Qu, R. Zhang, and J.C. Bi, Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal, Fuel, 147(2015), p. 133. doi: 10.1016/j.fuel.2015.01.004
      [24]
      S.F. Yuan, N. Zhang, X. Qu, J.C. Bi, Q.E. Cao, and J.L. Wang, Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal, Fuel, 200(2017), p. 153. doi: 10.1016/j.fuel.2017.03.066
      [25]
      D.D. Zhu, Y. Cheng, B. Xue, Y.S. Jiang, and C.D. Wei, Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid, Silicon, 12(2020), No. 7, p. 1547. doi: 10.1007/s12633-019-00250-1
      [26]
      N.J. Wagner, R.H. Matjie, J.H. Slaghuis, and J.H.P. van Heerden, Characterization of unburned carbon present in coarse gasification ash, Fuel, 87(2008), No. 6, p. 683. doi: 10.1016/j.fuel.2007.05.022
      [27]
      F.Y. Wang, Y.Q. Sun, D.R. Li, et al., Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning, Carbon, 134(2018), p. 264. doi: 10.1016/j.carbon.2018.03.081
      [28]
      Y. Yuan, S.C. Wei, Y. Liang, et al., Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties, J. Alloys Compd., 867(2021), art. No. 159040. doi: 10.1016/j.jallcom.2021.159040
      [29]
      Z.L. Zhang, Y.Y. Lv, X.Q. Chen, et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption, J. Magn. Magn. Mater., 487(2019), art. No. 165334. doi: 10.1016/j.jmmm.2019.165334
      [30]
      F. Mederos-Henry, J. Mahin, B.P. Pichon, et al., Highly efficient wideband microwave absorbers based on zero-valent Fe@γ-Fe2O3 and Fe/co/Ni carbon-protected alloy nanoparticles supported on reduced graphene oxide, Nanomaterials, 9(2019), No. 9, art. No. 1196. doi: 10.3390/nano9091196
      [31]
      Y.C. Du, W.W. Liu, R. Qiang, et al., Shell thickness-dependent microwave absorption of core–shell Fe3O4@C composites, ACS Appl. Mater. Interfaces, 6(2014), No. 15, p. 12997. doi: 10.1021/am502910d
      [32]
      L.L. Deng, J.B. Zhang, and R.W. Shu, Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers, J. Colloid Interface Sci., 602(2021), p. 282. doi: 10.1016/j.jcis.2021.06.029
      [33]
      R. C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401. doi: 10.1002/adma.200306460
      [34]
      M.Q. Ning, J.B. Li, B.Y. Kuang, et al., One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption, Appl. Surf. Sci., 447(2018), p. 244. doi: 10.1016/j.apsusc.2018.03.242
      [35]
      F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
      [36]
      H. Huang, Y. Gao, C.F. Fang, et al., Spray granulation of Fe and C nanoparticles and their impedance match for microwave absorption, J. Mater. Sci. Technol., 34(2018), No. 3, p. 496. doi: 10.1016/j.jmst.2017.01.010
      [37]
      R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426. doi: 10.1039/C5TA01457C
      [38]
      G.H. He, Y.P. Duan, and H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon, Nano-Micro Lett., 12(2020), No. 1, art. No. 57. doi: 10.1007/s40820-020-0388-4
      [39]
      Y. Liu, J. Lai, and J.F. Shi, Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites, New Carbon Mater., 35(2020), No. 4, p. 428. doi: 10.1016/S1872-5805(20)60500-5
      [40]
      Y.R. Feng, X. Guo, H.Y. Gong, Y.J. Zhang, and X. Lin, Enhanced electromagnetic microwave absorption of Fe/C/SiCN composite ceramics targeting in integrated structure and function, Ceram. Int., 47(2021), No. 3, p. 3842. doi: 10.1016/j.ceramint.2020.09.244
      [41]
      P.G. Yang, M. Yu, J. Fu, and L.R. Wang, Synthesis and microwave absorption properties of hierarchical Fe micro-sphere assembly by nano-plates, J. Alloys Compd., 721(2017), p. 449. doi: 10.1016/j.jallcom.2017.05.296
      [42]
      X.F. Zhang, Y. Rao, J.J. Guo, and G.W. Qin, Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption, Carbon, 96(2016), p. 972. doi: 10.1016/j.carbon.2015.09.087
      [43]
      B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Construction of Ni-loaded ceramic composites for efficient microwave absorption, Appl. Surf. Sci., 538(2021), art. No. 148018. doi: 10.1016/j.apsusc.2020.148018
      [44]
      D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, and M. Zhang, Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range, Carbon, 80(2014), p. 103. doi: 10.1016/j.carbon.2014.08.044
      [45]
      F. Gao, Y.Y. Li, L.T. Mao, et al., Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue, Mater. Lett., 308(2022), art. No. 131168.
      [46]
      D.W. Liu, Y.C. Du, P. Xu, et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption, J. Mater. Chem. C, 7(2019), No. 17, p. 5037. doi: 10.1039/C9TC00771G
      [47]
      L.L. Yan, J. Liu, S.C. Zhao, et al., Coaxial multi-interface hollow Ni–Al2O3–ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions, Nano Res., 10(2017), No. 5, p. 1595. doi: 10.1007/s12274-016-1302-8
      [48]
      F. Wang, W.H. Gu, J.B. Chen, et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption, J. Mater. Sci. Technol., 105(2022), p. 92. doi: 10.1016/j.jmst.2021.06.058
      [49]
      L. Wang, B. Wen, X.Y. Bai, C. Liu, and H.B. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber, J. Colloid Interface Sci., 540(2019), p. 30. doi: 10.1016/j.jcis.2018.12.111
      [50]
      X. Yan, X.X. Huang, B. Zhong, et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials, Chem. Eng. J., 391(2020), art. No. 123538. doi: 10.1016/j.cej.2019.123538
      [51]
      K. Sooklal, B.S. Cullum, S.M. Angel, and C.J. Murphy, Photophysical properties of ZnS nanoclusters with spatially localized Mn2+, J. Phys. Chem., 100(1996), No. 11, p. 4551. doi: 10.1021/jp952377a
      [52]
      R.X. Zhang, L. Wang, C.Y. Xu, et al., Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency, Nano Res., 15(2022), No. 7, p. 6743. doi: 10.1007/s12274-022-4401-8
      [53]
      G.H. Pan, J. Zhu, S.L. Ma, G.B. Sun, and X.J. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene, ACS Appl. Mater. Interfaces, 5(2013), No. 23, p. 12716. doi: 10.1021/am404117v
      [54]
      S. Xie, X.N. Guo, G.Q. Jin, and X.Y. Guo, Carbon coated Co–SiC nanocomposite with high-performance microwave absorption, Phys. Chem. Chem. Phys., 15(2013), No. 38, p. 16104. doi: 10.1039/c3cp52735b
      [55]
      Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4–BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598. doi: 10.1016/j.compositesb.2019.01.008
      [56]
      F. Wu, Q. Li, Z.H. Liu, et al., Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties, Carbon, 182(2021), p. 484. doi: 10.1016/j.carbon.2021.06.044
      [57]
      Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312. doi: 10.1016/j.cej.2019.04.153
      [58]
      Z.J. Wang, L.N. Wu, J.G. Zhou, Z.H. Jiang, and B.Z. Shen, Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption, Nanoscale, 6(2014), No. 21, p. 12298. doi: 10.1039/C4NR03040K

    Catalog


    • /

      返回文章
      返回