Cite this article as: |
Feifei Li, Anrui He, Yong Song, Zheng Wang, Xiaoqing Xu, Shiwei Zhang, Yi Qiang, and Chao Liu, Deep learning for predictive mechanical properties of hot-rolled strip in complex manufacturing systems, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1093-1103. https://doi.org/10.1007/s12613-022-2536-y |
宋勇 E-mail: songyong@ustb.edu.cn
[1] |
B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611. doi: 10.1007/s12613-022-2448-x
|
[2] |
C.C. Tasan, M. Diehl, D. Yan, et al., An overview of dual-phase steels: Advances in microstructure-oriented processing and picromechanically guided design, Annu. Rev. Mater. Res., 45(2015), No. 1, p. 391. doi: 10.1146/annurev-matsci-070214-021103
|
[3] |
J.X. Li, W. Wang, Y. Zhou, et al., A review of research status of hydrogen embrittlement for automotive advanced high-strength steels, Acta Metall. Sin., 56(2020), No. 4, p. 444. doi: 10.11900/0412.1961.2019.00427
|
[4] |
J. Kaczmarczyk and A. Grajcar, Numerical simulation and experimental investigation of cold-rolled steel cutting, Materials, 11(2018), No. 7, art. No. 1263. doi: 10.3390/ma11071263
|
[5] |
H.D. Fu, H.T. Zhang, C.S. Wang, W. Yong, and J.X. Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 635. doi: 10.1007/s12613-022-2458-8
|
[6] |
T.Q. Cheng and G.C. Chen, Prediction of mechanical properties of hot-rolled strip steel based on PCA-GBDT method, J. Phys. Conf. Ser., 1774(2021), art. No. 012002. doi: 10.1088/1742-6596/1774/1/012002
|
[7] |
W. Yang, W.G. Li, Y.T. Zhao, B.K. Yan, and W.B. Wang, Mechanical property prediction of steel and influence factors selection based on random forests, Iron Steel, 53(2018), No. 3, p. 44.
|
[8] |
C.X. Zhang and L. Wu, SVM-based mechanical model used to predict mechanical properties of cold rolled stainless steel sheet, J. Donghua Univ. Nat. Sci., 36(2010), No. 5, p. 559.
|
[9] |
F.F. Li, Y. Song, C. Liu, R.J. Jia, and B. Li, Research on error distribution modeling of mechanical performance prediction model for hot rolled strip, Metall. Ind. Autom., 43(2019), No. 6, p. 28.
|
[10] |
J. Yang and S.W. Wu, Property prediction of steel rolling process based on machine learning, Iron Steel, 56(2021), No. 9, p. 1.
|
[11] |
X.D. Wang and R.D. An, Mechanical properties prediction models based on machine learning for hot rolled strip and application, J. Plast. Eng., 28(2021), No. 10, p. 155. doi: 10.3969/j.issn.1007-2012.2021.10.020
|
[12] |
I.J. Ding, N.W. Zheng, and M.C. Hsieh, Hand gesture intention-based identity recognition using various recognition strategies incorporated with VGG convolution neural network-extracted deep learning features, J. Intell. Fuzzy Syst., 40(2021), No. 4, p. 7775. doi: 10.3233/JIFS-189598
|
[13] |
T. Mazda, Y. Kajita, T. Akedo, and T. Hazama, Recognition of nonlinear hysteretic behavior by neural network using deep learning, IOP Conf. Ser. Mater. Sci. Eng., 809(2020), art. No. 012010. doi: 10.1088/1757-899X/809/1/012010
|
[14] |
G.E. Hinton, S. Osindero, and Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput., 18(2006), No. 7, p. 1527. doi: 10.1162/neco.2006.18.7.1527
|
[15] |
B. SravyaPranati, D. Suma, C. ManjuLatha, and S. Putheti, Large-scale video classification with convolutional neural networks, [in] T. Senjyu, P.N. Mahalle, T. Perumal, and A. Joshi, eds, International Conference on Transportation Information and Safety (ICTIS), Springer, Singapore, 2020, p. 689.
|
[16] |
D. Liu, S. Li, and Z.D. Cao, State-of-the-art on deep learning and its application in image object classification and detection, Comput. Sci., 43(2016), No. 12, p. 13. doi: 10.11896/j.issn.1002-137X.2016.12.003
|
[17] |
L.N. Zhang and X.L. Sun, Study on Speech Recognition Method of Artificial Intelligence Deep Learning, J. Phys. Conf. Ser., 1754(2021), art. No. 012183. doi: 10.1088/1742-6596/1754/1/012183
|
[18] |
W.G. Li, L. Xie, Y.T. Zhao, Z.X. Li, and W.B. Wang, Prediction model for mechanical properties of hot-rolled strips by deep learning, J. Iron Steel Res. Int., 27(2020), No. 9, p. 1045. doi: 10.1007/s42243-020-00450-9
|
[19] |
H. Xu, Z.W. Xu, and K. Zhang, Mechanical properties prediction for hot roll steel Using convolutional neural network, [in] L.Q. Pan, J. Liang, and B.Y. Ou, eds, Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, Vol. 1160, Springer, Singapore, 2020, p. 56.
|
[20] |
B.B. Wang, Y. Song, and J. Wang, A deep learning model for the accurate prediction of the microstructure performance of hot rolled steel, Int. J. Manuf. Res., 16(2021), No. 3, p. 262. doi: 10.1504/IJMR.2021.117918
|
[21] |
J.X. Chen, F. Zhao, Y.G. Sun, L Zhang, and YL Yin, Prediction model based on XGBoost for mechanical properties of steel materials, Int. J. Model. Ident. Control, 33(2020), No. 4, p. 322. doi: 10.1504/IJMIC.2019.107482
|
[22] |
Y. Song, B. Li, C. Liu, and F.F. Li, Prediction model of mechanical properties of hot rolled strip based on improved stacked self-encoder, Metall. Ind. Autom., 44(2020), No. 6, p. 2.
|
[23] |
Z.H. Zhou and F. Ji, Deep forest: Towards an alternative to deep neural networks, [in] International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, 2017, p. 3553.
|
[24] |
Z.H. Zhou and F. Ji, Deep forest, Natl. Sci. Rev., 6(2019), No. 1, p. 74. doi: 10.1093/nsr/nwy108
|
[25] |
J.M. Ding, Y.H. Wu, Q.B. Luo, and D. Yi, A fault diagnosis method of mechanical bearing based on the deep forest, J. Vib. Shock, 40(2021), No. 12, p. 107.
|
[26] |
N. Yao and K. Cheng, Electric power equipment image recognition based on deep forest learning model with few samples, J. Phys. Conf. Ser., 1732(2021), art. No. 012025. doi: 10.1088/1742-6596/1732/1/012025
|
[27] |
X.Z. Zhang, J.S. Liu, W.W. He, X.X. Yan, and C.P. Yang, Effect of heating parameters on grain growth behavior of 12%Cr steel, Heat Treat. Met., 45(2020), No. 9, p. 77.
|
[28] |
D. Xu, C. Ji, H.Y. Zhao, D.Y. Ju, and M.Y. Zhu, A new study on the growth behavior of austenite grains during heating processes, Sci. Rep., 7(2017), art. No. 3968. doi: 10.1038/s41598-017-04371-8
|
[29] |
K.M. Agarwal, R.K. Tyagi, V.K. Chaubey, and A. Dixit, Comparison of different methods of Severe Plastic Deformation for grain refinement, IOP Conf. Ser. Mater. Sci. Eng., 691(2019), art. No. 012074. doi: 10.1088/1757-899X/691/1/012074
|
[30] |
B. Li, Q.Y. Liu, S.J. Jia, and J. Chen, Grain ultrafining of low-carbon microalloyed steel by intercritical deformation, Heat Treat. Met., 43(2018), No. 5, p. 133.
|
[31] |
Y.J. Hui, Y. Yu, L. Wang, C. Wang, and J. Chen, Strain induced precipitation of second phase in titanium microalloyed IF steel, Iron Steel, 51(2016), No. 1, p. 82.
|
[32] |
X.L. Wu, Z.Z. Zhao, Y. Tian, et al., Phase transformation and second-phase precipitation behavior of Nb–Ti microalloyed steel during cooling after deformation, Iron Steel Vanadium Titanium, 29(2008), No. 1, p. 66.
|
[33] |
J.F. Cheng, Z.D. Liu, and G.B. Tang, Numerical simulation of phase transformation process for carbon steel during Run-out table cooling, Iron Steel, 47(2012), No. 1, p. 55.
|
[34] |
M.J. Sun, X.M. Xia, and L.Z. Long, Finite element analysis of temperature field and phase transition in laminar-like cooling and coiling process of strip steel, Hot Work. Technol., 49(2020), No. 10, p. 131.
|
[35] |
S.Z. Wang, Z.J. Gao, G.L. Wu, and X.P. Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 645. doi: 10.1007/s12613-021-2399-7
|