留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(13)

数据统计

分享

计量
  • 文章访问数:  1077
  • HTML全文浏览量:  394
  • PDF下载量:  105
  • 被引次数: 0
Yong Wang, Zhenqi Wang, Aixiang Wu, Liang Wang, Qing Na, Chen Cao, and Gangfeng Yang, Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 193-208. https://doi.org/10.1007/s12613-022-2537-x
Cite this article as:
Yong Wang, Zhenqi Wang, Aixiang Wu, Liang Wang, Qing Na, Chen Cao, and Gangfeng Yang, Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 193-208. https://doi.org/10.1007/s12613-022-2537-x
引用本文 PDF XML SpringerLink
特约综述

膏体充填体多场性能的实验研究与数值模拟:回顾与展望

  • 通讯作者:

    王珍岐    E-mail: 15101014530@163.com

    吴爱祥    E-mail: wuaixiang@126.com

文章亮点

  • (1) 系统地对膏体充填体多场性能的实验研究与数值模拟等研究成果进行综述。
  • (2) 提出了针对膏体充填体多场性能从室内实验、数值模拟到原位监测的研究思路。
  • (3) 针对膏体充填体多场性能的研究和应用进行了总结和展望。
  • 膏体充填技术是一种用于治理地下采空区和尾矿库的绿色采矿方法。膏体充填体在采场中的固化过程是热–水–力–化学多场性能共同作用的结果。目前,对膏体充填体多场性能的研究主要包括室内相似模拟实验、现场多场性能监测实验、多场性能耦合模型构建、多场性能数值模拟。由于难以在真实采场中研究膏体充填体的原位多场性能,目前针对膏体充填体的原位多场性能的研究大多采用数值模拟方法。通过对真实采场中的膏体充填体的不同条件(例如,养护环境、采场几何形状、排水条件以及有无充填挡墙和充填速率等因素)进行模拟,进一步研究膏体充填体的原位多场性能。本文总结了开展膏体充填体多场性能数值模拟所采用的数学模型,并列举了数值模拟在原位膏体充填体多场性能演化的工程应用实例。最后提出膏体充填体多场性能需要加强相关理论研究,形成基于膏体充填体的强度设计准则,开展膏体充填体多场性能的全域数值模拟,开发基于膏体充填体多场性能演化的安全预警技术,开发膏体充填体多场性能监测技术和监测设备的自动化和无线化,实现膏体充填体多场性能监测技术的应用和推广。
  • Invited Review

    Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives

    + Author Affiliations
    • Cemented paste backfill (CPB) technology is a green mining method used to control underground goaves and tailings ponds. The curing process of CPB in the stope is the product of a thermo–hydro–mechanical–chemical multi-field performance interaction. At present, research on the multi-field performance of CPB mainly includes indoor similar simulation experiments, in-situ multi-field performance monitoring experiments, multi-field performance coupling model construction of CPB, and numerical simulation of the multi-field performance of CPB. Because it is hard to study the in-situ multi-field performance of CPB in the real stope, most current research on in-situ multi-field performance adopts the numerical simulation method. By simulating the conditions of CPB in the real stope (e.g., maintenance environment, stope geometry, drainage conditions, and barricade and backfilling rates), the multi-field performance of CPB is further studied. This paper summarizes the mathematical models employed in the numerical simulation and lists the engineering application cases of numerical simulation in the in-situ multi-field performance of CPB. Finally, it proposes that the multi-field performance of CPB needs to strengthen the theoretical study of multi-field performance, form the strength design criterion based on the multi-field performance of CPB, perform a full-range numerical simulation of the multi-field performance of CPB, develop a pre-warning technology for the CPB safety of CPB, develop automatic and wireless sensors for the multi-field performance monitoring of CPB, and realize the application and popularization of CPB monitoring technology.
    • loading
    • [1]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [2]
      M. Jafari, M. Shahsavari, and M. Grabinsky, Drained triaxial compressive shear response of cemented paste backfill (CPB), Rock Mech. Rock Eng., 54(2021), No. 6, p. 3309. doi: 10.1007/s00603-021-02464-5
      [3]
      C.W. Song, G.M. Yu, and B.F. Xue, A huge source of pollution hazard—Disaster and cure of tailings pond, [in] 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, 2011, p. 3486.
      [4]
      X.M. Wang, B. Zhao, and Q.L. Zhang, Cemented backfill technology based on phosphorous gypsum, J. Cent. South Univ. Technol., 16(2009), No. 2, p. 285. doi: 10.1007/s11771-009-0049-8
      [5]
      X. Zhao, A. Fourie, R. Veenstra, and C.C. Qi, Safety of barricades in cemented paste-backfilled stopes, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1054. doi: 10.1007/s12613-020-2006-3
      [6]
      W.K. Ting, A. Hasan, F. Sahdi, et al., A narrow wall system to capture temperature stress–strain behavior in paste backfill, Geotech. Test. J., 43(2020), No. 2, art. No. 20170383. doi: 10.1520/GTJ20170383
      [7]
      X. Zhao, A. Fourie, and C.C. Qi, An analytical solution for evaluating the safety of an exposed face in a paste backfill stope incorporating the arching phenomenon, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1206. doi: 10.1007/s12613-019-1885-7
      [8]
      S. Cao, G.L. Xue, and E. Yilmaz, Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending, IEEE Access, 7(2019), p. 139317. doi: 10.1109/ACCESS.2019.2943479
      [9]
      H.J. Li, Y.C. Zhang, L. Xu, X.G. Jia, and X.M. Gu, Examination of the treatment quality of filling mined-out voids using super-high-water material by the TEM technique, Environ. Earth Sci., 76(2017), No. 3, art. No. 115. doi: 10.1007/s12665-017-6431-1
      [10]
      H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
      [11]
      Y. Zhou, S.W. Feng, and J.W. Li, Study on the failure mechanism of rock mass around a mined-out area above a highway tunnel—Similarity model test and numerical analysis, Tunnelling Underground Space Technol., 118(2021), art. No. 104182. doi: 10.1016/j.tust.2021.104182
      [12]
      C. Loupasakis and G. Konstantopoulou, Safety assessment of abandoned tailings ponds: An example from Kirki mines, Greece, Bull. Eng. Geol. Environ., 69(2010), No. 1, p. 63. doi: 10.1007/s10064-009-0243-9
      [13]
      R. Liu, J. Liu, Z. Zhang, A. Borthwick, and K. Zhang, Accidental water pollution risk analysis of mine tailings ponds in Guanting reservoir watershed, Zhangjiakou City, China, Int. J. Environ. Res. Public Health, 12(2015), No. 12, p. 15269. doi: 10.3390/ijerph121214983
      [14]
      H. Zhang, Z.J. Zhang, X.L. Ma, and Q.G. Zhang, Spatial distribution and risk assessment of pollutants in a tailings pond for gold mining in Pinggu District, Beijing, China, Environ. Earth Sci., 80(2021), No. 11, art. No. 416. doi: 10.1007/s12665-021-09710-7
      [15]
      P. Martínez-Pagán, A. Faz, J.A. Acosta, D.M. Carmona, and S. Martínez-Martínez, A multidisciplinary study for mining landscape reclamation: A study case on two tailing ponds in the Region of Murcia (SE Spain), Phys. Chem. Earth Parts A/B/C, 36(2011), No. 16, p. 1331. doi: 10.1016/j.pce.2011.02.007
      [16]
      Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191. doi: 10.1007/s12613-020-1977-4
      [17]
      L. Jiang, H. Sun, T. Peng, et al., Comprehensive evaluation of environmental availability, pollution level and leaching heavy metals behavior in non-ferrous metal tailings, J. Environ. Manage., 290(2021), art. No. 112639. doi: 10.1016/j.jenvman.2021.112639
      [18]
      S. Coussy, M. Benzaazoua, D. Blanc, P. Moszkowicz, and B. Bussière, Assessment of arsenic immobilization in synthetically prepared cemented paste backfill specimens, J. Environ. Manage., 93(2012), No. 1, p. 10. doi: 10.1016/j.jenvman.2011.08.015
      [19]
      Q.F. Guo, X. Xi, S.T. Yang, and M.F. Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 626. doi: 10.1007/s12613-021-2374-3
      [20]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [21]
      S.Y. Ouyang, Y.L. Huang, N. Zhou, et al., Experiment on hydration exothermic characteristics and hydration mechanism of sand-based cemented paste backfill materials, Constr. Build. Mater., 318(2022), art. No. 125870. doi: 10.1016/j.conbuildmat.2021.125870
      [22]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [23]
      S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
      [24]
      A. Tariq and E.K. Yanful, A review of binders used in cemented paste tailings for underground and surface disposal practices, J. Environ. Manage., 131(2013), p. 138. doi: 10.1016/j.jenvman.2013.09.039
      [25]
      S. Huang, K.W. Xia, and L. Qiao, Dynamic tests of cemented paste backfill: Effects of strain rate, curing time, and cement content on compressive strength, J. Mater. Sci., 46(2011), No. 15, p. 5165. doi: 10.1007/s10853-011-5449-0
      [26]
      F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33. doi: 10.1016/j.mineng.2012.01.009
      [27]
      B. Ercikdi, T. Yılmaz, and G. Külekci, Strength and ultrasonic properties of cemented paste backfill, Ultrasonics, 54(2014), No. 1, p. 195. doi: 10.1016/j.ultras.2013.04.013
      [28]
      X.W. Yi, G.W. Ma, and A. Fourie, Compressive behaviour of fibre-reinforced cemented paste backfill, Geotext. Geomembr., 43(2015), No. 3, p. 207. doi: 10.1016/j.geotexmem.2015.03.003
      [29]
      L. Cui and M. Fall, A coupled thermo–hydro–mechanical–chemical model for underground cemented tailings backfill, Tunnelling Underground Space Technol., 50(2015), p. 396. doi: 10.1016/j.tust.2015.08.014
      [30]
      X. Ke, H.B. Hou, M. Zhou, Y. Wang, and X. Zhou, Effect of particle gradation on properties of fresh and hardened cemented paste backfill, Constr. Build. Mater., 96(2015), p. 378. doi: 10.1016/j.conbuildmat.2015.08.057
      [31]
      C. Hou, L.J. Yang, L. Li, and B.X. Yan, Mechanical characteristics and stress evolution of cemented paste backfill: Effect of curing time, solid content, and binder content, Front. Mater., 8(2022), art. No. 812402. doi: 10.3389/fmats.2021.812402
      [32]
      W.B. Xu, P.W. Cao, and M.M. Tian, Strength development and microstructure evolution of cemented tailings backfill containing different binder types and contents, Minerals, 8(2018), No. 4, art. No. 167. doi: 10.3390/min8040167
      [33]
      B. Koohestani, T. Belem, A. Koubaa, and B. Bussière, Experimental investigation into the compressive strength development of cemented paste backfill containing nano-silica, Cem. Concr. Compos., 72(2016), p. 180. doi: 10.1016/j.cemconcomp.2016.06.016
      [34]
      D. Wu, T.F. Deng, and R.K. Zhao, A coupled THMC modeling application of cemented coal gangue–fly ash backfill, Constr. Build. Mater., 158(2018), p. 326. doi: 10.1016/j.conbuildmat.2017.10.009
      [35]
      Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101. doi: 10.1016/j.cemconcomp.2016.01.005
      [36]
      M. Pokharel and M. Fall, Coupled thermochemical effects on the strength development of slag-paste backfill materials, J. Mater. Civ. Eng., 23(2011), No. 5, p. 511. doi: 10.1061/(ASCE)MT.1943-5533.0000192
      [37]
      K. Fang, M. Fall, and L. Cui, Thermo–chemo–mechanical cohesive zone model for cemented paste backfill–rock interface, Eng. Fract. Mech., 244(2021), art. No. 107546. doi: 10.1016/j.engfracmech.2021.107546
      [38]
      A. Ghirian and M. Fall, Coupled thermos–hydro–mechanical–chemical behaviour of cemented paste backfill in column experiments. Part I: Physical, hydraulic and thermal processes and characteristics, Eng. Geol., 164(2013), p. 195. doi: 10.1016/j.enggeo.2013.01.015
      [39]
      J. Vergne, Rules of thumb for the hard rock mining industry, [in] Hard Rock Miner’s Handbook, 3rd ed., McIntosh Engineering Inc., USA, 2000.
      [40]
      A.B. Fourie, M. Helinski, and M. Fahey, Using effective stress theory to characterize the behaviour of backfill, [in] Proceedings of the Minefill Conference, Perth, 2007, p. 27.
      [41]
      J.C.H. Célestin and M. Fall, Thermal conductivity of cemented paste backfill material and factors affecting it, Int. J. Min. Reclam. Environ., 23(2009), No. 4, p. 274. doi: 10.1080/17480930902731943
      [42]
      M. Fall and S.S. Samb, WITHDRAWN: Influence of curing temperature on strength, deformation behaviour and pore structure of cemented paste backfill at early ages, Constr. Build. Mater., 2006. DOI: 10.1016/j.conbuildmat.2006.08.010
      [43]
      Z.Q. Wang, Y. Wang, L. Cui, C. Bi, and A.X. Wu, Insight into the isothermal multiphysics processes in cemented paste backfill: Effect of curing time and cement-to-tailings ratio, Constr. Build. Mater., 325(2022), art. No. 126739. doi: 10.1016/j.conbuildmat.2022.126739
      [44]
      E. Yilmaz, Investigating the Hydrogeotechnical and Microstructural Properties of Cemented Paste Backfill Using the CUAPS Apparatus [Dissertation], Universite du Quebec en Abitibi-Temiscamingue, Quebec, 2010.
      [45]
      D. Wu, G.H. Sun, and Y.C. Liu, Modeling the thermo–hydro–chemical behavior of cemented coal gangue–fly ash backfill, Constr. Build. Mater., 111(2016), p. 522. doi: 10.1016/j.conbuildmat.2016.02.179
      [46]
      Y. Wang, A.X. Wu, S.Y. Wang, et al., Correlative mechanism of hydraulic-mechanical property in cemented paste backfill, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 3, p. 579. doi: 10.1007/s11595-017-1637-3
      [47]
      A. Ghirian and M. Fall, Coupled thermo–hydro–mechanical–chemical behaviour of cemented paste backfill in column experiments. Part II: Mechanical, chemical and microstructural processes and characteristics, Eng. Geol., 170(2014), p. 11. doi: 10.1016/j.enggeo.2013.12.004
      [48]
      A. Ghirian and M. Fall, Coupled behavior of cemented paste backfill at early ages, Geotech. Geol. Eng., 33(2015), No. 5, p. 1141. doi: 10.1007/s10706-015-9892-6
      [49]
      O. Nasir and M. Fall, Modeling the heat development in hydrating CPB structures, Comput. Geotech., 36(2009), No. 7, p. 1207. doi: 10.1016/j.compgeo.2009.05.008
      [50]
      J.H. Lee, E.S. Park, J.C. Lee, M.Y. Huh, H.J. Kim, and J.C. Bae, Effect of deformation temperature on the deformation behaviors of amorphous/crystalline composites, J. Alloys Compd., 483(2009), No. 1-2, p. 165. doi: 10.1016/j.jallcom.2008.08.098
      [51]
      M. Fall, D. Adrien, J.C. Célestin, M. Pokharel, and M. Touré, Saturated hydraulic conductivity of cemented paste backfill, Miner. Eng., 22(2009), No. 15, p. 1307. doi: 10.1016/j.mineng.2009.08.002
      [52]
      L. Cui and M. Fall, Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions, Constr. Build. Mater., 125(2016), p. 553. doi: 10.1016/j.conbuildmat.2016.08.080
      [53]
      M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3-4, p. 397. doi: 10.1016/j.enggeo.2010.05.016
      [54]
      L.R. Bernier and M. Li, High temperature oxidation (heating) of sulfide paste backfill: A mineralogical and chemical perspective, [in] Proceedings of Sudbury, Sudbury, 2003.
      [55]
      M. Fall and S.S. Samb, Effect of high temperature on strength and microstructural properties of cemented paste backfill, Fire Saf. J., 44(2009), No. 4, p. 642. doi: 10.1016/j.firesaf.2008.12.004
      [56]
      N. Abdul-Hussain and M. Fall, Thermo–hydro–mechanical behaviour of sodium silicate-cemented paste tailings in column experiments, Tunnelling Underground Space Technol., 29(2012), p. 85. doi: 10.1016/j.tust.2012.01.004
      [57]
      B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In situ measurements of cemented paste backfill at the Cayeli Mine, Can. Geotech. J., 49(2012), No. 7, p. 755. doi: 10.1139/t2012-040
      [58]
      M. Helinski, M. Fahey, and A. Fourie, Behavior of cemented paste backfill in two mine stopes: Measurements and modeling, J. Geotech. Geoenviron. Eng., 137(2011), No. 2, p. 171. doi: 10.1061/(ASCE)GT.1943-5606.0000418
      [59]
      L.D. Suits, T.C. Sheahan, E. Yilmaz, et al., Assessment of the modified CUAPS apparatus to estimate in situ properties of cemented paste backfill, Geotech. Test. J., 33(2010), No. 5, art. No. 102689. doi: 10.1520/GTJ102689
      [60]
      E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273. doi: 10.1080/17480930.2017.1285858
      [61]
      Q.S. Chen, Q.L. Zhang, A. Fourie, X. Chen, and C.C. Qi, Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism, Constr. Build. Mater., 154(2017), p. 34. doi: 10.1016/j.conbuildmat.2017.07.142
      [62]
      J.H. Qin, J. Zheng, and L. Li, Experimental study of the shrinkage behavior of cemented paste backfill, J. Rock Mech. Geotech., 13(2021), No. 3, p. 545. doi: 10.1016/j.jrmge.2021.01.005
      [63]
      E. Komurlu and A. Kesimal, Sulfide-rich mine tailings usage for short-term support purposes: An experimental study on paste backfill barricades, Geomech. Eng., 9(2015), No. 2, p. 195. doi: 10.12989/gae.2015.9.2.195
      [64]
      D. Wu, W.T. Hou, S. Liu, and H.B. Liu, Mechanical response of barricade to coupled THMC behavior of cemented paste backfill, Int. J. Concr. Struct. Mater., 14(2020), art. No. 39. doi: 10.1186/s40069-020-00413-0
      [65]
      P.Y. Yang, L. Li, M. Aubertin, M. Brochu-Baekelmans, and S. Ouellet, Stability analyses of waste rock barricades designed to retain paste backfill, Int. J. Geomech., 17(2017), No. 3, art. No. 040160. doi: 10.1061/(ASCE)GM.1943-5622.0000740
      [66]
      J.P. Doherty, A. Hasan, G.H. Suazo, and A. Fourie, Investigation of some controllable factors that impact the stress state in cemented paste backfill, Can. Geotech. J., 52(2015), No. 12, p. 1901. doi: 10.1139/cgj-2014-0321
      [67]
      M. Helinski, M. Fahey, and A. Fourie, Numerical modeling of cemented mine backfill deposition, J. Geotech. Geoenviron. Eng., 133(2007), No. 10, p. 1308. doi: 10.1061/(ASCE)1090-0241(2007)133:10(1308)
      [68]
      M. Helinski and A.G. Grice, Water management in hydraulic fill operations, [in] Proceedings of the 9th International Symposium in Mining with Backfill, Montréal, 2007.
      [69]
      M.B. Revell and D.P. Sainsbury, Paste bulkhead failures, [in] Proceedings of International Symposium of MineFill07, Montreal, 2007.
      [70]
      J.P. Doherty, A numerical study into factors affecting stress and pore pressure in free draining mine stopes, Comput. Geotech., 63(2015), p. 331. doi: 10.1016/j.compgeo.2014.10.001
      [71]
      T. Belem, A. Harvey, R. Simon, and M. Aubertin, Measurement of internal pressures of a gold mine pastefill during and after the stope backfilling, [in] 5th International Symposium on Ground Support in Mining and Underground Construction, 2004, p. 619.
      [72]
      B.D. Thompson, M.W. Grabinsky, W.F. Bawden, and D.B. Counter, In-situ measurements of cemented paste backfill in long-hole stopes, [in] Pro-ceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, 2009, p. 197.
      [73]
      E. Yilmaz, T. Belem, and M. Benzaazoua, Effects of curing and stress conditions on hydromechanical, geotechnical and geochemical properties of cemented paste backfill, Eng. Geol., 168(2014), p. 23. doi: 10.1016/j.enggeo.2013.10.024
      [74]
      S. Servant, Détermination des Paramètres Mécaniques des Remblais Miniers Faits de Résidus Ciments [Dissertation], McGill University, Montreal, 2001.
      [75]
      T. Belem, M. Benzaazoua, B. Bussière, and A.M. Dagenais, Effects of settlement and drainage on strength development within mine paste backfill, [in] Proceedings of the Ninth International Conference on Tailings and Mine Waste, Fort Collins, 2002, p. 139.
      [76]
      K. Le Roux, W.F. Bawden, and M.F. Grabinsky, Field properties of cemented paste backfill at the Golden Giant mine, Min. Technol., 114(2005), No. 2, p. 65. doi: 10.1179/037178405X44557
      [77]
      K.A. le Roux, In Situ Properties and Liquefaction Analysis of Cemented Paste Backfill [Dissertation], The University of Toronto, Toronto, 2004.
      [78]
      J. Cayouette, Optimization of the paste backfill plant at Louvicourt mine, CIM Bull., 96(2003), No. 1075, p. 51.
      [79]
      M.W. Grabinsky, F.W. Bawden, D. Simon, and B. Thompson, In situ properties of cemented paste backfill in Alimak Stope, [in] Proceedings of the 61st Canadian Geotechnical Conference, Edmonton, 2008, p. 790.
      [80]
      M. Yumlu and M. Guresci, Paste backfill bulkhead monitoring—A case study from Inmet’s Cayeli mine, Turkey, [in] Proceedings of the 9th International Symposium in Mining with Backfill, Montréal, 2007, p. 28.
      [81]
      H.Q. Jiang, M. Fall, and L. Cui, Yield stress of cemented paste backfill in sub-zero environments: Experimental results, Miner. Eng., 92(2016), p. 141. doi: 10.1016/j.mineng.2016.03.014
      [82]
      M.L. Walske, H. McWilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2016), No. 1, p. 148. doi: 10.1139/cgj-2014-0502
      [83]
      M. Grabinsky and P. Simms, Self-desiccation of cemented paste backfill and implications for mine design, [in] Proceedings Ninth International Seminar on Paste and Thickened Tailings, Perth, 2006, p. 323.
      [84]
      P. Simms and M. Grabinsky, Direct measurement of matric suction in triaxial tests on early-age cemented paste backfill, Can. Geotech. J., 46(2009), No. 1, p. 93. doi: 10.1139/T08-098
      [85]
      L. Cui and M. Fall, Mathematical modelling of cemented tailings backfill: A review, Int. J. Min. Reclam. Environ., 33(2019), No. 6, p. 389. doi: 10.1080/17480930.2018.1453320
      [86]
      L. Cui and M. Fall, Modeling of pressure on retaining structures for underground fill mass, Tunnelling Underground Space Technol., 69(2017), p. 94. doi: 10.1016/j.tust.2017.06.010
      [87]
      L. Cui and M. Fall, Multiphysics modeling and simulation of strength development and distribution in cemented tailings backfill structures, Int. J. Concr. Struct. Mater., 12(2018), No. 1, art. No. 25. doi: 10.1186/s40069-018-0250-y
      [88]
      D. Wu, M. Fall, and S.J. Cai, Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill, Miner. Eng., 42(2013), p. 76. doi: 10.1016/j.mineng.2012.11.011
      [89]
      O. Nasir and M. Fall, Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages, Tunnelling Underground Space Technol., 25(2010), No. 1, p. 9. doi: 10.1016/j.tust.2009.07.008
      [90]
      D. Wu, W.T. Hou, H. Yang, and L.J. Guo, Numerical analysis of the hydraulic and mechanical behavior of in situ cemented paste backfill, Geotech. Geol. Eng., 38(2020), No. 5, p. 4877. doi: 10.1007/s10706-020-01333-2
      [91]
      W.Y. Xu, R.K. Zhao, X.C. Yang, et al., Coupled effect of curing temperature and moisture on THM behavior of cemented paste backfill, Adv. Civ. Eng., 2020(2020), art. No. 1870952. doi: 10.1155/2020/1870952
      [92]
      L. Cui and M. Fall, Multiphysics model for consolidation behavior of cemented paste backfill, Int. J. Geomech., 17(2017), No. 3, art. No. 04016077. doi: 10.1061/(ASCE)GM.1943-5622.0000743
      [93]
      D. Wu, M. Fall, and S.J. Cai, Numerical modelling of thermally and hydraulically coupled processes in hydrating cemented tailings backfill columns, Int. J. Min. Reclam. Environ., 28(2014), No. 3, p. 173. doi: 10.1080/17480930.2013.809194
      [94]
      M. Pokharel and M. Fall, Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill, Cem. Concr. Compos., 38(2013), p. 21. doi: 10.1016/j.cemconcomp.2013.03.015
      [95]
      L. Cui and M. Fall, Mathematical modeling and analysis of in-situ strength development in cemented paste backfill structure, [in] GeoEdmonton 2018 Conference, Edmonton, 2018.
      [96]
      A.K. Schindler and K.J. Folliard, Influence of supplementary cementing materials on the heat of hydration of concrete, [in] Advances in Cement and Concrete IX Conference, Copper Mountain Conference Resort in Colorado, Colorado, 2003, p. 17.
      [97]
      A. Alnajim, Modélisation et Simulation du Comportement du Béton Sous Hautes Températures par une Approche Thermo–Hygro–Mécanique Couplée: Application à des Situations Accidentelles, Universite de Merne la Vallee, Marnela-Vallee, 2004.
      [98]
      J. Sercombe, C. Galle, and G. Ranc, Modélisation du comportement du béton à haute température: Transferts des fluides et de chaleur et deformations pendant les transitoires thermiques, Note Technique SCCME, 2001, p. 81.
      [99]
      W.H. Somerton, J.A. Keese, and S.L. Chu, Thermal behavior of unconsolidated oil sands, Soc. Petroleum Eng. J., 14(1974), No. 5, p. 513. doi: 10.2118/4506-PA
      [100]
      J. Côté and J.M. Konrad, A generalized thermal conductivity model for soils and construction materials, Can. Geotech. J., 42(2005), No. 2, p. 443. doi: 10.1139/t04-106
      [101]
      L. Cui and M. Fall, Multiphysics modelling of the behaviour of cemented tailings backfill materials, [in] International Conference on Civil, Structural and Transportation Engineering, Ottawa, 2015, p. 330.
      [102]
      L. Cui and M. Fall, Numerical simulation of consolidation behavior of large hydrating fill mass, Int. J. Concr. Struct. Mater., 14(2020), No. 1, art. No. 23. doi: 10.1186/s40069-020-0398-0
      [103]
      P.G. Ranjith, J. Zhao, M.H. Ju, et al., Opportunities and challenges in deep mining: A brief review, Engineering, 3(2017), No. 4, p. 546. doi: 10.1016/J.ENG.2017.04.024

    Catalog


    • /

      返回文章
      返回