留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  970
  • HTML全文浏览量:  291
  • PDF下载量:  57
  • 被引次数: 0
Shuya Zhang, Yanchun Xue, Yutang Zhang, Chengxing Zhu, Xingmei Guo, Fu Cao, Xiangjun Zheng, Qinghong Kong, Junhao Zhang,  and Tongxiang Fan, KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 601-610. https://doi.org/10.1007/s12613-022-2539-8
Cite this article as:
Shuya Zhang, Yanchun Xue, Yutang Zhang, Chengxing Zhu, Xingmei Guo, Fu Cao, Xiangjun Zheng, Qinghong Kong, Junhao Zhang,  and Tongxiang Fan, KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 601-610. https://doi.org/10.1007/s12613-022-2539-8
引用本文 PDF XML SpringerLink
研究论文

KOH辅助水相合成双金属有机骨架及其衍生的硒化物复合材料用于高效储锂研究

    * 共同第一作者
  • 通讯作者:

    郭兴梅    E-mail: guoxm@just.edu.cn

    范同祥    E-mail: txfan@sjtu.edu.cn

文章亮点

  • (1) 开发了一种KOH辅助水相合成双金属有机框架材料的绿色高效合成方法。
  • (2) 该双金属硒化物/碳复合材料可缓解储锂过程中体积膨胀并促进电化学反应动力学。
  • (3) 总结并提出了KOH辅助水系合成双金属有机框架材料的方法具有普适性。
  • 金属有机框架(MOFs)是一类很有前景的多孔材料,其水稳定性和绿色环保的合成是当今工业界及学术界研究的两个重要课题。大部分MOFs材料通过溶剂热法制备,制备过程中使用的有机溶剂(如DMF)会限制其商业生产规模。因此,如果能够使用水作为溶剂宏量制备MOFs材料具有十分重要的研究意义。本文旨在开发具有结构优势和高存储容量的双金属硒化物作为锂离子电池的负极材料,利用KOH辅助的水性策略宏量合成双金属有机框架材料,并衍生制备多种双金属硒化物氮/碳(NC)复合材料,采用扫描、透射电镜观察、电化学测试等研究。其中,以Fe–Co–Se/NC为例,作为锂离子电池负极材料时,Fe–Co–Se/NC在1.0 A·g−1时实现了1165.9 mAh·g−1的优异初始比容量,经过550次循环后Fe–Co–Se/NC负极的可逆容量为1247.4 mAh·g−1。这些优异的性能与其介孔三维(3D)多面体结构有关,其稳定的三维结构保证了结构稳定性和电解质的润湿性,均匀分布的Fe–Co–Se纳米颗粒尺寸加速了电化学反应动力学并极大地抑制了体积膨胀。由此总结并提出,KOH辅助水相合成双金属MOFs的策略具有普适性,并且衍生制得的双金属硒化物氮/碳复合材料保留了双金属MOFs的三维多孔多面体结构,可将该技术扩展到其他MOFs的合成及储能与转换领域的应用。
  • Research Article

    KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage

    + Author Affiliations
    • To solve low efficiency, environmental pollution, and toxicity for synthesizing zeolitic imidazolate frameworks (ZIFs) in organic solvents, a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons, which are used as precursors to prepare bimetallic selenide and N-doped carbon (NC) composites. Among them, Fe–Co–Se/NC retains the three-dimensional (3D) polyhedrons with mesoporous structure, and Fe–Co–Se nanoparticles are uniform in size and evenly distributed. When assessed as anode material for lithium-ion batteries, Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 mAh·g−1 at 1.0 A·g−1, and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 mAh·g−1 after 550 cycles. It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites, the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte, and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.
    • loading
    • [1]
      Z.X. Tang, H.Q. Ye, X. Ma, and K. Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1618. doi: 10.1007/s12613-021-2296-0
      [2]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [3]
      W. Liu, J.J. Yuan, Y.C. Hao, et al., Heterogeneous structured MoSe2–MoO3 quantum dots with enhanced sodium/potassium storage, J. Mater. Chem. A, 8(2020), No. 44, p. 23395. doi: 10.1039/D0TA08674F
      [4]
      W. Wang, P.H. Li, H. Zheng, et al., Ultrathin layered SnSe nanoplates for low voltage, high-rate, and long-life alkali-ion batteries, Small, 13(2017), No. 46, art. No. 1702228. doi: 10.1002/smll.201702228
      [5]
      Y. Tian, Z.H. Sun, Y. Zhao, T.Z. Tan, H. Liu, and Z.H. Chen, One-dimensional Sb2Se3 nanorods synthesized through a simple polyol process for high-performance lithium-ion batteries, J. Nanomater., 2018(2018), art. No. 4273945.
      [6]
      J.H. Jeong, D.W. Jung, and E.S. Oh, Lithium storage characteristics of a new promising gallium selenide anodic material, J. Alloys Compd., 613(2014), p. 42. doi: 10.1016/j.jallcom.2014.06.017
      [7]
      N. Yu, L.X. Zou, C. Li, and K. Guo, In-situ growth of binder-free hierarchical carbon coated CoSe2 as a high performance lithium ion battery anode, Appl. Surf. Sci., 483(2019), p. 85. doi: 10.1016/j.apsusc.2019.03.258
      [8]
      Y.C. Xue, X.M. Guo, M.R. Wu, et al., Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598. doi: 10.1007/s12274-021-3640-4
      [9]
      W.W. Sun, C. Cai, X.X. Tang, L.P. Lv, and Y. Wang, Carbon coated mixed-metal selenide microrod: Bimetal-organic-framework derivation approach and applications for lithium-ion batteries, Chem. Eng. J., 351(2018), p. 169. doi: 10.1016/j.cej.2018.06.093
      [10]
      J. Shi, X.M. Guo, S.J. Liu, et al., An altered nanoemulsion assembly strategy for in situ synthesis of Co2P/NP-C nanospheres as advanced oxygen reduction electrocatalyst for zinc-air batteries, Compos. B Eng., 231(2022), art. No. 109589. doi: 10.1016/j.compositesb.2021.109589
      [11]
      Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
      [12]
      M. Huang, K. Mi, J.H. Zhang, et al., MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage, J. Mater. Chem. A, 5(2017), No. 1, p. 266. doi: 10.1039/C6TA09030C
      [13]
      Y. Hyeon, J. Lee, H. Qutaish, S.A. Han, et al., Lithium metal storage in zeolitic imidazolate framework derived nanoarchitectures, Energy Storage Mater., 33(2020), p. 95. doi: 10.1016/j.ensm.2020.07.015
      [14]
      D. Yarmolich, Y. Odarchenko, C. Murphy, et al., Novel binder-free carbon anode for high capacity Li-ion batteries, Nano Energy, 83(2021), art. No. 105816. doi: 10.1016/j.nanoen.2021.105816
      [15]
      W.F. Jiang, J.P. Sun, K.B. Lu, et al., 2D coordination polymer-derived CoSe2–NiSe2/CN nanosheets: The dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction, Dalton Trans., 50(2021), No. 28, p. 9934. doi: 10.1039/D1DT01487K
      [16]
      I. Khan, N. Baig, S. Ali, M. Usman, S.A. Khan, and K. Saeed, Progress in layered cathode and anode nanoarchitectures for charge storage devices: Challenges and future perspective, Energy Storage Mater., 35(2021), p. 443. doi: 10.1016/j.ensm.2020.11.033
      [17]
      N.X. Shi, B.J. Xi, M. Huang, et al., Hierarchical octahedra constructed by Cu2S/MoS2 $ \subset $Carbon framework with enhanced sodium storage, Small, 16(2020), No. 23, art. No. 2000952. doi: 10.1002/smll.202000952
      [18]
      S.H. Wang, J. Teng, Y.Y. Xie, et al., Embedding CoO nanoparticles in a yolk–shell N-doped porous carbon support for ultrahigh and stable lithium storage, J. Mater. Chem. A, 7(2019), No. 8, p. 4036. doi: 10.1039/C8TA11007G
      [19]
      L.T. Wang, S.Q. Li, X.D. Zhang, and Y.M. Huang, CoSe2 hollow microspheres with superior oxidase-like activity for ultrasensitive colorimetric biosensing, Talanta, 216(2020), art. No. 121009. doi: 10.1016/j.talanta.2020.121009
      [20]
      X.J. Wei, Y.B. Zhang, B.K. Zhang, et al, Yolk–shell-structured zinc-cobalt binary metal sulfide @ N-doped carbon for enhanced lithium-ion storage, Nano Energy, 64(2019), art. No. 103899. doi: 10.1016/j.nanoen.2019.103899
      [21]
      M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
      [22]
      X.M. Guo, S.J. Liu, X.H. Wan, et al, Controllable solid-phase fabrication of an Fe2O3/Fe5C2/Fe–N–C electrocatalyst toward optimizing the oxygen reduction reaction in zinc–air batteries, Nano Lett., 22(2022), No. 12, p. 4879. doi: 10.1021/acs.nanolett.2c01318
      [23]
      X.M. Guo, W. Zhang, J. Shi, et al., A channel-confined strategy for synthesizing CoN–CoOx/C as efficient oxygen reduction electrocatalyst for advanced zinc-air batteries, Nano Res., 15(2022), No. 3, p. 2092. doi: 10.1007/s12274-021-3835-8
      [24]
      J.Y. Kim, J.W. Lee, J.H. Yun, et al, Functionality of dual-phase lithium storage in a porous carbon host for lithium-metal anode, Adv. Funct. Mater., 30(2020), No. 15, art. No. 1910538. doi: 10.1002/adfm.201910538
      [25]
      P. Zhang, Y.H. Wu, H.R. Sun, J.Q. Zhao, Z.M. Cheng, and X.H. Kang, MnO2/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1735. doi: 10.1007/s12613-021-2272-8
      [26]
      X.H. Wan, X.M. Guo, M.T. Duan, et al., Ultrafine CoO nanoparticles and Co–N–C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries, Electrochim. Acta, 394(2021), art. No. 139135. doi: 10.1016/j.electacta.2021.139135
      [27]
      D. Zhou, W.L. Song, X.G. Li, L.Z. Fan, and Y.H. Deng, Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithium-ion batteries, J. Alloys Compd., 699(2017), p. 730. doi: 10.1016/j.jallcom.2016.12.426
      [28]
      J. Yang, Y.H. Lin, B.S. Guo, et al., Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621. doi: 10.1007/s12613-021-2270-x
      [29]
      Y. Li, M.H. Chen, B. Liu, Y. Zhang, X.Q. Liang, and X.H. Xia, Heteroatom doping: An effective way to boost sodium ion storage, Adv. Energy Mater., 10(2020), No. 27, art. No. 2000927. doi: 10.1002/aenm.202000927
      [30]
      M.T. Duan, M.R. Wu, K. Xue, et al., Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1647. doi: 10.1007/s12613-021-2315-1
      [31]
      F. Liu, S.Y. Liu, J.S. Meng, et al., Stabilizing conversion reaction electrodes by MOF derived N-doped carbon shell for highly reversible lithium storage, Nano Energy, 73(2020), art. No. 104758. doi: 10.1016/j.nanoen.2020.104758
      [32]
      Z.P. Zhao, S.H. Li, C.Q. Li, Z.Y. Liu, and D. Li, Hollow CoS2@C nanocubes for high-performance sodium storage, Appl. Surf. Sci., 519(2020), art. No. 146268. doi: 10.1016/j.apsusc.2020.146268
      [33]
      Y. Zhao, X.L. Shi, S.J.H. Ong, et al., Enhancing the charge transportation ability of yolk–shell structure for high-rate sodium and potassium storage, ACS Nano, 14(2020), No. 4, p. 4463. doi: 10.1021/acsnano.9b10045
      [34]
      M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
      [35]
      N.N. Yao, Y. Zhang, X.H. Rao, et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 876. doi: 10.1007/s12613-022-2422-7
      [36]
      J.B. Li, D. Yan, T. Lu, Y.F. Yao, and L.K. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries, Chem. Eng. J., 325(2017), p. 14. doi: 10.1016/j.cej.2017.05.046
      [37]
      X.Y. Meng, S.L. Deng, L. Feng, et al., Cd-doped FeSe nanoparticles embedded in N-doped carbon: A potential anode material for lithium storage, New J. Chem., 45(2021), No. 48, p. 22668. doi: 10.1039/D1NJ04642J
      [38]
      J. Jin, Y. Zheng, L.B. Kong, N. Srikanth, Q.Y. Yan, and K. Zhou, Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage, J. Mater. Chem. A, 6(2018), No. 32, p. 15710. doi: 10.1039/C8TA04425B
      [39]
      W. Liu, M. Shao, W.Q. Zhou, et al., Hollow Ni–CoSe2 embedded in nitrogen-doped carbon nanocomposites derived from metal-organic frameworks for high-rate anodes, ACS Appl. Mater. Interfaces, 10(2018), No. 45, p. 38845. doi: 10.1021/acsami.8b08861
      [40]
      Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629. doi: 10.1007/s12613-021-2249-7
      [41]
      S.X. Lu, W.B. Luo, Z.S. Chao, Y.H. Liu, Z. Zhang, and J.C. Fan, New type of SnSe/CoSe@C anode for lithium-ion batteries, Energy Fuels, 36(2022), No. 4, p. 2260. doi: 10.1021/acs.energyfuels.2c00062
      [42]
      J.L. Chen, X.M. Guo, M.Y. Gao, et al., Self-supporting dual-confined porous Si@c-ZIF@carbon nanofibers for high-performance lithium-ion batteries, Chem. Commun., 57(2021), No. 81, p. 10580. doi: 10.1039/D1CC04172J
      [43]
      A.M. Zardkhoshoui and S.S.H. Davarani, Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors, Chem. Eng. J., 402(2020), art. No. 126241. doi: 10.1016/j.cej.2020.126241
      [44]
      L.F. Guo, S.Y. Zhang, J. Xie, et al., Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 515. doi: 10.1007/s12613-019-1900-z
      [45]
      M.Y. Gao, Z.H. Tang, M.R. Wu, et al., Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries, J. Alloys Compd., 857(2021), art. No. 157554. doi: 10.1016/j.jallcom.2020.157554

    Catalog


    • /

      返回文章
      返回