留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(6)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  658
  • HTML全文浏览量:  245
  • PDF下载量:  47
  • 被引次数: 0
Xinghang Dai, Xiaozhong Gu, Jingru Zheng, Liang Zhao, Le Zhou, and Haiqiang Jiang, Carbonate-activated binder modified by supplementary materials for mine backfill and the associated heavy metal immobilization effects, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1548-1559. https://doi.org/10.1007/s12613-022-2540-2
Cite this article as:
Xinghang Dai, Xiaozhong Gu, Jingru Zheng, Liang Zhao, Le Zhou, and Haiqiang Jiang, Carbonate-activated binder modified by supplementary materials for mine backfill and the associated heavy metal immobilization effects, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1548-1559. https://doi.org/10.1007/s12613-022-2540-2
引用本文 PDF XML SpringerLink
研究论文

辅助材料改性碳酸盐激发充填胶凝材料及其对重金属的固化效应



  • 通讯作者:

    姜海强    E-mail: jianghaiqiang@mail.neu.edu.cn

  • 尾砂胶结充填(CPB)是尾砂资源化利用的有效手段,但是硅酸盐水泥(OPC)的高成本限制了其应用。考虑到Na2CO3激发胶凝材料的性能较差,本研究采用CaO、MgO和煅烧层状双氢氧化物(CLDH)等辅助材料对其性能进行改性,以寻找OPC的替代胶凝材料。在本研究中,等温量热仪、X衍射以及热重分析用来探索胶凝材料的水化动力学以及反应产物的物相组成,同时研究了CPB料浆的流动性、抗压强度演化以及胶结充填体对重金属的固化效果。研究结果表明,MgO与CLDH的耦合利用效果最好,Mg2-CLDH3养护56 d后的强度约为2.94 MPa,高于OPC样品。此外,改性的Na2CO3激发胶凝材料的成本低于OPC,并且具有良好的重金属固化效果。这些结果表明,辅助材料改性的碳酸盐激发胶凝材料适用于CPB。
  • Research Article

    Carbonate-activated binder modified by supplementary materials for mine backfill and the associated heavy metal immobilization effects

    + Author Affiliations
    • Cemented paste backfill (CPB) is one of the effective methods for resource utilization of tailings, but the high cost of ordinary Portland cement (OPC) limits its utilization. Considering the poor performance of Na2CO3-activated binders, in this work, supplementary materials, including CaO, MgO, and calcined layered double hydroxide (CLDH), were used to modify their properties with the aim of finding an alternative binder to OPC. Isothermal calorimetry, X-ray diffraction, and thermogravimetric analyses were conducted to explore the reaction kinetics and phase assembles of the binder. The properties of the CPB samples, such as flowability, strength development, and heavy metal immobilization effects, were then investigated. The results show that the coupling utilization of MgO and CLDH showed good performance. The strength of the Mg2-CLDH3 sample was approximately 2.94 MPa after curing for 56 d, which was higher than that of the OPC-based sample. Moreover, the cost of the modified Na2CO3-activated binder was lower than that of the OPC-based binder. Modified sample showed satisfactory heavy metal immobilization effects. These findings demonstrate that carbonate-activated binder modified by supplementary materials can be suitable in CPB.
    • loading
    • Supplementary Information-s12613-022-2540-2.docx
    • [1]
      D.L. Shang, G.Z. Yin, X.S. Li, et al., Analysis for green mine (phosphate) performance of China: An evaluation index system, Resour. Policy, 46(2015), p. 71. doi: 10.1016/j.resourpol.2015.08.005
      [2]
      I.M. Jiskani, Q.X. Cai, W. Zhou, and S.A. Ali Shah, Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production, Resour. Policy, 71(2021), art. No. 102007. doi: 10.1016/j.resourpol.2021.102007
      [3]
      S.Q. Zhang, T.Y. Shi, W. Ni, et al., The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash-slag-based agent, J. Hazard. Mater., 415(2021), art. No. 125625. doi: 10.1016/j.jhazmat.2021.125625
      [4]
      H.Q. Shi, Mine green mining, Energy Procedia, 16(2012), p. 409. doi: 10.1016/j.egypro.2012.01.067
      [5]
      Z.G. Fu and H.C. Liao, Unbalanced double hierarchy linguistic term set: The TOPSIS method for multi-expert qualitative decision making involving green mine selection, Inf. Fusion, 51(2019), p. 271. doi: 10.1016/j.inffus.2019.04.002
      [6]
      S.Y. Zhang, F.Y. Ren, Y.L. Zhao, J.P. Qiu, and Z.B. Guo, The effect of stone waste on the properties of cemented paste backfill using alkali-activated slag as binder, Constr. Build. Mater., 283(2021), art. No. 122686. doi: 10.1016/j.conbuildmat.2021.122686
      [7]
      S.Y. Zhang, Y.L. Zhao, H.X. Ding, J.P. Qiu, and C. Hou, Effect of sodium chloride concentration and pre-curing time on the properties of cemented paste backfill in a sub-zero environment, J. Cleaner Prod., 283(2021), art. No. 125310. doi: 10.1016/j.jclepro.2020.125310
      [8]
      S.Y. Zhang, Y.L. Zhao, H.X. Ding, J.P. Qiu, and Z.B. Guo, Recycling flue gas desulfurisation gypsum and phosphogypsum for cemented paste backfill and its acid resistance, Constr. Build. Mater., 275(2021), art. No. 122170. doi: 10.1016/j.conbuildmat.2020.122170
      [9]
      Y.L. Zhao, J.P. Qiu, P.Q. Wu, Z.B. Guo, S.Y. Zhang, and X.G. Sun, Preparing a binder for cemented paste backfill using low-aluminum slag and hazardous oil shale residue and the heavy metals immobilization effects, Powder Technol., 399(2022), art. No. 117167. doi: 10.1016/j.powtec.2022.117167
      [10]
      Y.L. Zhao, J.P. Qiu, S.Y. Zhang, et al., Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Mix proportion optimization, Powder Technol., 398(2022), art. No. 117155. doi: 10.1016/j.powtec.2022.117155
      [11]
      Y. Zhao, A. Soltani, A. Taheri, M. Karakus, and A. Deng, Application of slag–cement and fly ash for strength development in cemented paste backfills, Minerals, 9(2018), No. 1, art. No. 22. doi: 10.3390/min9010022
      [12]
      Y. Zhao, A. Taheri, A. Soltani, M. Karakus, and A. Deng, Strength development and strain localization behavior of cemented paste backfills using Portland cement and fly ash, Materials, 12(2019), No. 20, art. No. 3282. doi: 10.3390/ma12203282
      [13]
      Á. Fernández, J.L. García Calvo, and M.C. Alonso, Ordinary Portland Cement composition for the optimization of the synergies of supplementary cementitious materials of ternary binders in hydration processes, Cem. Concr. Compos., 89(2018), p. 238. doi: 10.1016/j.cemconcomp.2017.12.016
      [14]
      S. Naganathan, H.A. Razak, and S.N.A. Hamid, Properties of controlled low-strength material made using industrial waste incineration bottom ash and quarry dust, Mater. Des., 33(2012), p. 56. doi: 10.1016/j.matdes.2011.07.014
      [15]
      F. Cihangir, B. Ercikdi, A. Kesimal, A. Turan, and H. Deveci, Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage, Miner. Eng., 30(2012), p. 33. doi: 10.1016/j.mineng.2012.01.009
      [16]
      H.Q. Jiang, Z.J. Qi, E. Yilmaz, J. Han, J.P. Qiu, and C.L. Dong, Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills, Constr. Build. Mater., 218(2019), p. 689. doi: 10.1016/j.conbuildmat.2019.05.162
      [17]
      S.H. Kang, Y.H. Kwon, S.G. Hong, S. Chun, and J. Moon, Hydrated lime activation on byproducts for eco-friendly production of structural mortars, J. Clean. Prod., 231(2019), p. 1389. doi: 10.1016/j.jclepro.2019.05.313
      [18]
      C.J. Shi and R.L. Day, Pozzolanic reaction in the presence of chemical activators, Cem. Concr. Res., 30(2000), No. 1, p. 51. doi: 10.1016/S0008-8846(99)00205-7
      [19]
      D. Jeon, W.S. Yum, Y. Jeong, and J.E. Oh, Properties of quicklime(CaO)-activated Class F fly ash with the use of CaCl2, Cem. Concr. Res., 111(2018), p. 147. doi: 10.1016/j.cemconres.2018.05.019
      [20]
      J.X. Wang, X.J. Lyu, L.Y. Wang, X.Q. Cao, Q. Liu, and H.Y. Zang, Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders, J. Cleaner Prod., 171(2018), p. 622. doi: 10.1016/j.jclepro.2017.10.077
      [21]
      Y.L. Zhao, J.P. Qiu, S.Y. Zhang, et al., Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders, Constr. Build. Mater., 250(2020), art. No. 118603. doi: 10.1016/j.conbuildmat.2020.118603
      [22]
      H.Q. Jiang, M. Fall, E. Yilmaz, Y.H. Li, and L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy, Powder Technol., 372(2020), p. 258. doi: 10.1016/j.powtec.2020.06.009
      [23]
      X. Chen, A. Meawad, and L.J. Struble, Method to stop geopolymer reaction, J. Am. Ceram. Soc., 97(2014), No. 10, p. 3270. doi: 10.1111/jace.13071
      [24]
      C09 Committee, Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2021.
      [25]
      Y.L. Zhao, X.W. Gu, J.P. Qiu, S.Y. Zhang, Z.B. Guo, and X.G. Sun, Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Co-treatment with oil shale residue, J. Environ. Manage., 319(2022), art. No. 115621. doi: 10.1016/j.jenvman.2022.115621
      [26]
      Karen Scrivener, A Practical Guide to Microstructural Analysis of Cementitious Materials, Taylor & Francis Group, London, 2016.
      [27]
      X.Y. Ke, S.A. Bernal, and J.L. Provis, Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides, Cem. Concr. Res., 81(2016), p. 24. doi: 10.1016/j.cemconres.2015.11.012
      [28]
      N.T. Dung, T.J.N. Hooper, and C. Unluer, Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes, Cem. Concr. Res., 126(2019), art. No. 105927. doi: 10.1016/j.cemconres.2019.105927
      [29]
      J.W. Bullard, H.M. Jennings, R.A. Livingston, et al., Mechanisms of cement hydration, Cem. Concr. Res., 41(2011), No. 12, p. 1208. doi: 10.1016/j.cemconres.2010.09.011
      [30]
      B. Yuan, Q.L. Yu, and H.J.H. Brouwers, Time-dependent characterization of Na2CO3 activated slag, Cem. Concr. Compos., 84(2017), p. 188. doi: 10.1016/j.cemconcomp.2017.09.005
      [31]
      D. Jeon, Y.B. Jun, Y. Jeong, and J.E. Oh, Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system, Cem. Concr. Res., 67(2015), p. 215. doi: 10.1016/j.cemconres.2014.10.001
      [32]
      S.A. Bernal, J.L. Provis, R.J. Myers, R. San Nicolas, and J.S.J. van Deventer, Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders, Mater. Struct., 48(2015), No. 3, p. 517. doi: 10.1617/s11527-014-0412-6
      [33]
      A. Fernández-Jiménez and F. Puertas, Setting of alkali-activated slag cement. Influence of activator nature, Adv. Cem. Res., 13(2001), No. 3, p. 115. doi: 10.1680/adcr.2001.13.3.115
      [34]
      J.L. Bischoff, D.B. Herbst, and R.J. Rosenbauer, Gaylussite formation at mono lake, California, Geochim. Cosmochim. Acta, 55(1991), No. 6, p. 1743. doi: 10.1016/0016-7037(91)90144-T
      [35]
      J. Xin, L. Liu, L.H. Xu, J.Y. Wang, P. Yang, and H.S. Qu, A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total. Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
      [36]
      Y. Sun, Y.L. Zhao, J.P. Qiu, S.Y. Zhang, X.G. Sun, and X.W. Gu, Preparation and characterization of a new alkali-activated binder for superfine-tailings mine backfill, Environ. Sci. Pollut. Res. Int., 29(2022), No. 48, p. 73115. doi: 10.1007/s11356-022-20746-5
      [37]
      R.J. Myers, E. L'Hôpital, J.L. Provis, and B. Lothenbach, Effect of temperature and aluminium on calcium (alumino)silicate hydrate chemistry under equilibrium conditions, Cem. Concr. Res., 68(2015), p. 83. doi: 10.1016/j.cemconres.2014.10.015
      [38]
      A.M. Chaka and A.R. Felmy, Ab initio thermodynamic model for magnesium carbonates and hydrates, J. Phys. Chem. A, 118(2014), No. 35, p. 7469. doi: 10.1021/jp500271n
      [39]
      Y.L. Zhao, P.Q. Wu, J.P. Qiu, et al., Recycling hazardous steel slag after thermal treatment to produce a binder for cemented paste backfill, Powder Technol., 395(2022), p. 652. doi: 10.1016/j.powtec.2021.10.008
      [40]
      Y. He, Q.S. Chen, C.C. Qi, Q.L. Zhang, and C.C. Xiao, Lithium slag and fly ash-based binder for cemented fine tailings backfill, J. Environ. Manage., 248(2019), art. No. 109282. doi: 10.1016/j.jenvman.2019.109282
      [41]
      Q.S. Chen, Q.L. Zhang, A. Fourie, and C. Xin, Utilization of phosphogypsum and phosphate tailings for cemented paste backfill, J. Environ. Manage., 201(2017), p. 19. doi: 10.1016/j.jenvman.2017.06.027
      [42]
      W. Chen, Y. Li, P.L. Shen, and Z.H. Shui, Microstructural development of hydrating Portland cement paste at early ages investigated with non-destructive methods and numerical simulation, J. Nondestruct. Eval., 32(2013), No. 3, p. 228. doi: 10.1007/s10921-013-0175-y
      [43]
      D. Lootens, P. Jousset, L. Martinie, N. Roussel, and R.J. Flatt, Yield stress during setting of cement pastes from penetration tests, Cem. Concr. Res., 39(2009), No. 5, p. 401. doi: 10.1016/j.cemconres.2009.01.012
      [44]
      D.P. Bentz, E.J. Garboczi, C.J. Haecker, and O.M. Jensen, Effects of cement particle size distribution on performance properties of Portland cement-based materials, Cem. Concr. Res., 29(1999), No. 10, p. 1663. doi: 10.1016/S0008-8846(99)00163-5
      [45]
      T. Sato and J.J. Beaudoin, Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials, Adv. Cem. Res., 23(2011), No. 1, p. 33. doi: 10.1680/adcr.9.00016
      [46]
      W.S. Yum, Y. Jeong, H. Song, and J.E. Oh, Recycling of limestone fines using Ca(OH)2- and Ba(OH)2-activated slag systems for eco-friendly concrete brick production, Constr. Build. Mater., 185(2018), p. 275. doi: 10.1016/j.conbuildmat.2018.07.112
      [47]
      Y.Y. Wu, P. Duan, and C.J. Yan, Role of layered double hydroxides in setting, hydration degree, microstructure and compressive strength of cement paste, Appl. Clay Sci., 158(2018), p. 123. doi: 10.1016/j.clay.2018.03.024
      [48]
      B. Guo, B. Liu, J. Yang, and S.G. Zhang, The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review, J. Environ. Manage., 193(2017), p. 410. doi: 10.1016/j.jenvman.2017.02.026
      [49]
      S.Y. Zhang, Y.L. Zhao, Z.B. Guo, and H.X. Ding, Stabilization/solidification of hexavalent chromium containing tailings using low-carbon binders for cemented paste backfill, J. Environ. Chem. Eng., 9(2021), No. 1, art. No. 104738. doi: 10.1016/j.jece.2020.104738
      [50]
      S. Fan, B. Cao, N. Deng, Y.D. Hu, and M. Li, Effects of ferrihydrite nanoparticle incorporation in cementitious materials on radioactive waste immobilization, J. Hazard. Mater., 379(2019), art. No. 120570. doi: 10.1016/j.jhazmat.2019.04.053
      [51]
      F.L. Long, C.G. Niu, N. Tang, et al., Highly efficient removal of hexavalent chromium from aqueous solution by calcined Mg/Al-layered double hydroxides/polyaniline composites, Chem. Eng. J., 404(2021), art. No. 127084. doi: 10.1016/j.cej.2020.127084
      [52]
      S.P. Chen, X.Y. Sun, X. Luo, and Z.W. Liang, CO2 adsorption on premodified Li/Al hydrotalcite impregnated with polyethylenimine, Ind. Eng. Chem. Res., 58(2019), No. 3, p. 1177. doi: 10.1021/acs.iecr.8b04775
      [53]
      M. Daud, A. Hai, F. Banat, et al., A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) - Containing hybrids as promising adsorbents for dyes removal, J. Mol. Liq., 288(2019), art. No. 110989. doi: 10.1016/j.molliq.2019.110989
      [54]
      Z.Q. Sun and A. Vollpracht, Leaching of monolithic geopolymer mortars, Cem. Concr. Res., 136(2020), art. No. 106161. doi: 10.1016/j.cemconres.2020.106161
      [55]
      W.J. Long, T.H. Ye, F. Xing, and K.H. Khayat, Decalcification effect on stabilization/solidification performance of Pb-containing geopolymers, Cem. Concr. Compos., 114(2020), art. No. 103803. doi: 10.1016/j.cemconcomp.2020.103803

    Catalog


    • /

      返回文章
      返回