留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  4472
  • HTML全文浏览量:  1725
  • PDF下载量:  652
  • 被引次数: 0
Yubo Liu, Baozhong Ma, Yingwei Lü, Chengyan Wang,  and Yongqiang Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 209-224. https://doi.org/10.1007/s12613-022-2544-y
Cite this article as:
Yubo Liu, Baozhong Ma, Yingwei Lü, Chengyan Wang,  and Yongqiang Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 209-224. https://doi.org/10.1007/s12613-022-2544-y
引用本文 PDF XML SpringerLink
特约综述

从自然资源中提取锂的研究进展

  • 通讯作者:

    马保中    E-mail: bzhma_ustb@yeah.net

    王成彦    E-mail: chywang@yeah.net

文章亮点

  • (1) 系统地总结了近年来从自然资源中提取锂的技术进展。
  • (2) 比较了各提锂方法的优缺点。
  • (3) 在对现有方法认识的基础上,对自然资源提锂的发展提出了合理的建议。
  • 锂是国家重要的战略储备金属,是许多战略性新兴产业的关键原材料。随着全球电气化的普及和可控核聚变的发展,锂的消费量在近十年有了明显的增长,可以预见的是,其需求量将在未来很长一段时间内持续增长。虽然研究人员已开展了很多从废旧材料中回收锂的研究,但受限于目前市场上锂的总流通量,从自然资源中提取锂仍然是新兴产业快速发展的首选。本文综述了近年来从自然资源中提取锂的技术进展。以锂辉石、锂云母和盐湖卤水为主要锂资源,对现有的提取方法进行了总结,并比较了各种方法的优缺点。锂辉石的转型-熟化法是目前最重要的提锂工艺,然而大量能源和硫酸的消耗仍无法避免。少数企业选择锂云母作为工业生产提锂的原料,但未考虑高价值的铷和铯的综合利用。针对高镁锂比的盐湖卤水,大量研究仅局限于实验室规模,真正落地投产的很少。上述存在的问题急需解决,同时也应着力于开发新兴技术应用于从自然资源中提取锂。本文为未来自然资源提锂工艺的研究、开发、优化和工业应用提供了参考。
  • Invited Review

    A review of lithium extraction from natural resources

    + Author Affiliations
    • Lithium is considered to be the most important energy metal of the 21st century. Because of the development trend of global electrification, the consumption of lithium has increased significantly over the last decade, and it is foreseeable that its demand will continue to increase for a long time. Limited by the total amount of lithium on the market, lithium extraction from natural resources is still the first choice for the rapid development of emerging industries. This paper reviews the recent technological developments in the extraction of lithium from natural resources. Existing methods are summarized by the main resources, such as spodumene, lepidolite, and brine. The advantages and disadvantages of each method are compared. Finally, reasonable suggestions are proposed for the development of lithium extraction from natural resources based on the understanding of existing methods. This review provides a reference for the research, development, optimization, and industrial application of future processes.
    • loading
    • [1]
      S. Ferrari, M. Falco, A.B. Munoz-Garcia, et al., Solid-state post Li metal ion batteries: A sustainable forthcoming reality?, Adv. Energy Mater., 11(2021), No. 43, art. No. 2100785. doi: 10.1002/aenm.202100785
      [2]
      Y.B. Liu, B.Z. Ma, Y.W. Lv, C.Y. Wang, and Y.Q. Chen, Thorough extraction of lithium and rubidium from lepidolite via thermal activation and acid leaching, Miner. Eng., 178(2022), art. No. 107407. doi: 10.1016/j.mineng.2022.107407
      [3]
      A. Karrech, M.R. Azadi, M. Elchalakani, M.A. Shahin, and A.C. Seibi, A review on methods for liberating lithium from pegmatities, Miner. Eng., 145(2020), art. No. 106085. doi: 10.1016/j.mineng.2019.106085
      [4]
      S.E. Kesler, P.W. Gruber, P.A. Medina, et al., Global lithium resources: Relative importance of pegmatite, brine and other deposits, Ore Geol. Rev., 48(2012), p. 55. doi: 10.1016/j.oregeorev.2012.05.006
      [5]
      Z. Li, H.N. Gu, H. Wen, and Y.Q. Yang, Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process, Hydrometallurgy, 206(2021), art. No. 105759. doi: 10.1016/j.hydromet.2021.105759
      [6]
      U.S Geological Survey, Mineral Commodity Summaries 2022, U.S. Geological Survey, 2022 [2022-07-10]. https://doi.org/10.3133/mcs2022
      [7]
      F. Meng, J. McNeice, S.S. Zadeh, and A. Ghahreman, Review of lithium production and recovery from minerals, brines, and lithium-ion batteries, Miner. Process. Extr. Metall. Rev., 42(2021), No. 2, p. 123. doi: 10.1080/08827508.2019.1668387
      [8]
      J.C. Kelly, M. Wang, Q. Dai, and O. Winjobi, Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries, Resour. Conserv. Recycl., 174(2021), art. No. 105762. doi: 10.1016/j.resconrec.2021.105762
      [9]
      Y. Kim, Y. Han, S. Kim, and H.S. Jeon, Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process, Process Saf. Environ. Prot., 148(2021), p. 765. doi: 10.1016/j.psep.2021.02.001
      [10]
      J. Li, J. Kong, Q.S. Zhu, and H.Z. Li, In-situ capturing of fluorine with CaO for accelerated defluorination roasting of lepidolite in a fluidized bed reactor, Powder Technol., 353(2019), p. 498. doi: 10.1016/j.powtec.2019.05.063
      [11]
      S.M. Zhang, G.J. Yang, X.Y. Li, et al., Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 953. doi: 10.1007/s12613-022-2442-3
      [12]
      M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
      [13]
      W. Liu, J.X. Li, H.Y. Xu, J. Li, and X.P. Qiu, Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 917. doi: 10.1007/s12613-022-2483-7
      [14]
      N. Li, S.Q. Yang, H.S. Chen, S.Q. Jiao, and W.L. Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1019. doi: 10.1007/s12613-022-2486-4
      [15]
      M. Goto, K. Okumura, S. Nakagawa, et al., Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors, Fusion Eng. Des., 136(2018), p. 357. doi: 10.1016/j.fusengdes.2018.02.029
      [16]
      A.Y. Konobeyev, Y.A. Korovin, P.E. Pereslavtsev, U. Fischer, and U. von Möllendorff, Development of methods for calculation of deuteron-lithium and neutron-lithium cross sections for energies up to 50 MeV, Nucl. Sci. Eng., 139(2001), No. 1, p. 1. doi: 10.13182/NSE00-31
      [17]
      A. Youssef, R. Anwar, I.I. Bashter, E.A. Amin, and S.M. Reda, Neutron yield as a measure of achievement nuclear fusion using a mixture of deuterium and tritium isotopes, Phys. Scripta., 97(2022), No. 8, art. No. 085601. doi: 10.1088/1402-4896/ac7b4f
      [18]
      E. Stefanelli, M. Puccini, A. Pesetti, R. Lo Frano, and D. Aquaro, Lithium orthosilicate as nuclear fusion breeder material: Optimization of the drip casting production technology, Nucl. Mater. Energy, 30(2022), art. No. 101131. doi: 10.1016/j.nme.2022.101131
      [19]
      C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
      [20]
      J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
      [21]
      H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1715. doi: 10.1007/s12613-021-2366-3
      [22]
      B. Tadesse, F. Makuei, B. Albijanic, and L. Dyer, The beneficiation of lithium minerals from hard rock ores: A review, Miner. Eng., 131(2019), p. 170. doi: 10.1016/j.mineng.2018.11.023
      [23]
      N.K. Salakjani, P. Singh, and A.N. Nikoloski, Production of lithium - A literature review part 1: Pretreatment of spodumene, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 335. doi: 10.1080/08827508.2019.1643343
      [24]
      C. Grosjean, P.H. Miranda, M. Perrin, and P. Poggi, Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable Sustainable Energy Rev., 16(2012), No. 3, p. 1735. doi: 10.1016/j.rser.2011.11.023
      [25]
      K.S. Moon and D.W. Fuerstenau, Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates, Int. J. Miner. Process., 72(2003), No. 1-4, p. 11. doi: 10.1016/S0301-7516(03)00084-X
      [26]
      H. Hao, Z.W. Liu, F.Q. Zhao, Y. Geng, and J. Sarkis, Material flow analysis of lithium in China, Resour. Policy, 51(2017), p. 100. doi: 10.1016/j.resourpol.2016.12.005
      [27]
      N.K. Salakjani, P. Singh, and A.N. Nikoloski, Production of lithium-A literature review. part 2. extraction from spodumene, Miner. Process. Extr. Metall. Rev., 42(2021), No. 4, p. 268. doi: 10.1080/08827508.2019.1700984
      [28]
      V.I. Samoilov, N.A. Kulenova, Z.V. Sheregeda, L.G. Gadylbekova, V.A. Agapov, and L.V. Shushkevich, Integrated processing of spodumene in hydrometallurgy, Russ. J. Appl. Chem., 81(2008), No. 3, p. 494. doi: 10.1134/S1070427208030312
      [29]
      V.I. Samoilov, A.N. Borsuk, and N.A. Kulenova, Industrial methods for the integrated processing of minerals that contain beryllium and lithium, Metallurgist, 53(2009), No. 1-2, p. 53. doi: 10.1007/s11015-009-9137-0
      [30]
      D. Yelatontsev and A. Mukhachev, Processing of lithium ores: Industrial technologies and case studies - A review, Hydrometallurgy, 201(2021), art. No. 105578. doi: 10.1016/j.hydromet.2021.105578
      [31]
      J. Rioyo, S. Tuset, and R. Grau, Lithium extraction from spodumene by the traditional sulfuric acid process: A review, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 97. doi: 10.1080/08827508.2020.1798234
      [32]
      O. Peltosaari, P. Tanskanen, S. Hautala, E.P. Heikkinen, and T. Fabritius, Mechanical enrichment of converted spodumene by selective sieving, Miner. Eng., 98(2016), p. 30. doi: 10.1016/j.mineng.2016.07.010
      [33]
      S.B. Qiu, C.L. Liu, and J.G. Yu, Conversion from α-spodumene to intermediate product Li2SiO3 by hydrothermal alkaline treatment in the lithium extraction process, Miner. Eng., 183(2022), art. No. 107599. doi: 10.1016/j.mineng.2022.107599
      [34]
      C. Dessemond, G. Soucy, J.P. Harvey, and P. Ouzilleau, Phase transitions in the α–γ–β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching, Minerals, 10(2020), No. 6, art. No. 519. doi: 10.3390/min10060519
      [35]
      F. Lajoie-Leroux, C. Dessemond, G. Soucy, N. Laroche, and J.F. Magnan, Impact of the impurities on lithium extraction from β-spodumene in the sulfuric acid process, Miner. Eng., 129(2018), p. 1. doi: 10.1016/j.mineng.2018.09.011
      [36]
      H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives - A review, Hydrometallurgy, 189(2019), art. No. 105129. doi: 10.1016/j.hydromet.2019.105129
      [37]
      E. Gasafi and R. Pardemann, Processing of spodumene concentrates in fluidized-bed systems, Miner. Eng., 148(2020), art. No. 106205. doi: 10.1016/j.mineng.2020.106205
      [38]
      N.P. Kotsupalo, L.T. Menzheres, A.D. Ryabtsev, and V.V. Boldyrev, Mechanical activation of α-spodumene for further processing into lithium compounds, Theor. Found. Chem. Eng., 44(2010), No. 4, p. 503. doi: 10.1134/S0040579510040251
      [39]
      N.K. Salakjani, P. Singh, and A.N. Nikoloski, Acid roasting of spodumene: Microwave vs. conventional heating, Miner. Eng., 138(2019), p. 161. doi: 10.1016/j.mineng.2019.05.003
      [40]
      H. Guo, G. Kuang, H.D. Wang, H.Z. Yu, and X.K. Zhao, Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid, Minerals, 7(2017), No. 11, art. No. 205. doi: 10.3390/min7110205
      [41]
      H. Guo, H.Z. Yu, A.N. Zhou, et al., Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium, Trans. Nonferrous Met. Soc. China, 29(2019), No. 2, p. 407. doi: 10.1016/S1003-6326(19)64950-2
      [42]
      H. Guo, M.H. Lv, G. Kuang, and H.D. Wang, Enhanced lithium extraction from α-spodumene with fluorine-based chemical method: A stepwise heat treatment for fluorine removal, Miner. Eng., 174(2021), art. No. 107246. doi: 10.1016/j.mineng.2021.107246
      [43]
      G. Rosales, M. Ruiz, and M. Rodriguez, Study of the extraction kinetics of lithium by leaching β-spodumene with hydrofluoric acid, Minerals, 6(2016), No. 4, art. No. 98. doi: 10.3390/min6040098
      [44]
      G.D. Rosales, M.D.C. Ruiz, and M.H. Rodriguez, Novel process for the extraction of lithium from β-spodumene by leaching with HF, Hydrometallurgy, 147-148(2014), p. 1. doi: 10.1016/j.hydromet.2014.04.009
      [45]
      Y. Chen, Q.Q. Tian, B.Z. Chen, X.C. Shi, and T. Liao, Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy, 109(2011), No. 1-2, p. 43. doi: 10.1016/j.hydromet.2011.05.006
      [46]
      G. Kuang, Y. Liu, H. Li, S.Z. Xing, F.J. Li, and H. Guo, Extraction of lithium from β-spodumene using sodium sulfate solution, Hydrometallurgy, 177(2018), p. 49. doi: 10.1016/j.hydromet.2018.02.015
      [47]
      Y.F. Song, T.Y. Zhao, L.H. He, Z.W. Zhao, and X.H. Liu, A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate, Hydrometallurgy, 189(2019), art. No. 105141. doi: 10.1016/j.hydromet.2019.105141
      [48]
      P. Xing, C.Y. Wang, L. Zeng, et al., Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene, ACS Sustainable Chem. Eng., 7(2019), No. 10, p. 9498. doi: 10.1021/acssuschemeng.9b00923
      [49]
      G.D. Rosales, A.C.J. Resentera, J.A. Gonzalez, R.G. Wuilloud, and M.H. Rodriguez, Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching, Chem. Eng. Res. Des., 150(2019), p. 320. doi: 10.1016/j.cherd.2019.08.009
      [50]
      L.L.D. Santos, R.M.D. Nascimento, and S.B.C. Pergher, Beta-spodumene:Na2CO3:NaCl system calcination: A kinetic study of the conversion to lithium salt, Chem. Eng. Res. Des., 147(2019), p. 338. doi: 10.1016/j.cherd.2019.05.019
      [51]
      M.L. Grasso, J.A. González, and F.C. Gennari, Lithium extraction from β-LiAlSi2O6 using Na2CO3 through thermal reaction, Miner. Eng., 176(2022), art. No. 107349. doi: 10.1016/j.mineng.2021.107349
      [52]
      L.I. Barbosa, N.G. Valente, and J.A. González, Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas, Thermochim. Acta, 557(2013), p. 61. doi: 10.1016/j.tca.2013.01.033
      [53]
      L.I. Barbosa, G. Valente, R.P. Orosco, and J.A. González, Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56(2014), p. 29. doi: 10.1016/j.mineng.2013.10.026
      [54]
      L.I. Barbosa, J.A. González, and M.D.C. Ruiz, Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochim. Acta, 605(2015), p. 63. doi: 10.1016/j.tca.2015.02.009
      [55]
      A.C. Resentera, G.D. Rosales, M.R. Esquivel, and M.H. Rodriguez, Thermal and structural analysis of the reaction pathways of α-spodumene with NH4HF2, Thermochim. Acta, 689(2020), art. No. 178609. doi: 10.1016/j.tca.2020.178609
      [56]
      A.C. Resentera, M.R. Esquivel, and M.H. Rodriguez, Low-temperature lithium extraction from α-spodumene with NH4HF2: Modeling and optimization by least squares and artificial neural networks, Chem. Eng. Res. Des., 167(2021), p. 73. doi: 10.1016/j.cherd.2020.12.023
      [57]
      N. Setoudeh, A. Nosrati, and N.J. Welham, Phase changes in mechanically activated spodumene-Na2SO4 mixtures after isothermal heating, Miner. Eng., 155(2020), art. No. 106455. doi: 10.1016/j.mineng.2020.106455
      [58]
      T. Ncube, H. Oskierski, G. Senanayake, and B.Z. Dlugogorski, Two-step reaction mechanism of roasting spodumene with potassium sulfate, Inorg. Chem., 60(2021), No. 6, p. 3620. doi: 10.1021/acs.inorgchem.0c03125
      [59]
      B. Swain, Recovery and recycling of lithium: A review, Sep. Purif. Technol., 172(2017), p. 388. doi: 10.1016/j.seppur.2016.08.031
      [60]
      P. Xing, C.Y. Wang, Y.Q. Chen, and B.Z. Ma, Rubidium extraction from mineral and brine resources: A review, Hydrometallurgy, 203(2021), art. No. 105644. doi: 10.1016/j.hydromet.2021.105644
      [61]
      S. Reichel, T. Aubel, A. Patzig, E. Janneck, and M. Martin, Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms, Miner. Eng., 106(2017), p. 18. doi: 10.1016/j.mineng.2017.02.012
      [62]
      V.T. Luong, D.J. Kang, J.W. An, M.J. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p. 54. doi: 10.1016/j.hydromet.2013.01.015
      [63]
      N. Setoudeh, A. Nosrati, and N.J. Welham, Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate, Miner. Process. Extr. Metall., 130(2021), No. 4, p. 354. doi: 10.1080/25726641.2019.1649112
      [64]
      N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 62. doi: 10.1080/08827508.2016.1262858
      [65]
      Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111(2012), p. 1. doi: 10.1016/j.minpro.2012.03.005
      [66]
      H. Su, J.Y. Ju, J. Zhang, A.F. Yi, Z. Lei, L.N. Wang, Z.W. Zhu, and T. Qi, Lithium recovery from lepidolite roasted with potassium compounds, Miner. Eng., 145(2020), art. No. 106087. doi: 10.1016/j.mineng.2019.106087
      [67]
      V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim, and T. Tran, Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 141(2014), p. 8. doi: 10.1016/j.hydromet.2013.09.016
      [68]
      X.F. Zhang, Z.C. Chen, S. Rohani, M.Y. He, X.M. Tan, and W.Z. Liu, Simultaneous extraction of lithium, rubidium, cesium and potassium from lepidolite via roasting with iron(II) sulfate followed by water leaching, Hydrometallurgy, 208(2022), art. No. 105820. doi: 10.1016/j.hydromet.2022.105820
      [69]
      Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), No. 7, p. 1753. doi: 10.1016/S1003-6326(11)61383-6
      [70]
      K.I. Omoniyi, P.I. Agaku, and A.A. Baba, Optimal hydrometallurgical extraction conditions for lithium extraction from a nigerian polylithionite ore for industrial application, [in] G. Azimi, K. Forsberg, T. Ouchi, H. Kim, S. Alam, and A. Baba, eds, Rare Metal Technology 2020. The Minerals, Metals & Materials Series, Springer, Cham, 2020, p. 33.
      [71]
      X.F. Zhang, T. Aldahri, X.M. Tan, W.Z. Liu, L.Z. Zhang, and S.W. Tang, Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting, Chem. Eng. Process. Process Intensif., 147(2020), art. No. 107777. doi: 10.1016/j.cep.2019.107777
      [72]
      Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118(2012), p. 116. doi: 10.1016/j.hydromet.2012.02.004
      [73]
      Y.Q. Kuai, W.G. Yao, H.W. Ma, M.T. Liu, Y. Gao, and R.Y. Guo, Recovery lithium and potassium from lepidolite via potash calcination-leaching process, Miner. Eng., 160(2021), art. No. 106643. doi: 10.1016/j.mineng.2020.106643
      [74]
      J.L. Liu, Z.L. Yin, X.H. Li, Q.Y. Hu, and W. Liu, Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium, Trans. Nonferrous Met. Soc. China, 29(2019), No. 3, p. 641. doi: 10.1016/S1003-6326(19)64974-5
      [75]
      J.L. Liu, Z.L. Yin, W. Liu, X.H. Li, and Q.Y. Hu, Treatment of aluminum and fluoride during hydrochloric acid leaching of lepidolite, Hydrometallurgy, 191(2020), art. No. 105222. doi: 10.1016/j.hydromet.2019.105222
      [76]
      L. Rentsch, G. Martin, M. Bertau, and M. Höck, Lithium extracting from zinnwaldite: Economical comparison of an adapted spodumene and a direct-carbonation process, Chem. Eng. Technol., 41(2018), No. 5, p. 975. doi: 10.1002/ceat.201700604
      [77]
      G.D. Rosales, E.G. Pinna, D.S. Suarez, and M.H. Rodriguez, Recovery process of Li, Al and Si from lepidolite by leaching with HF, Minerals, 7(2017), No. 3, art. No. 36. doi: 10.3390/min7030036
      [78]
      H. Guo, G. Kuang, H. Wan, Y. Yang, H.Z. Yu, and H.D. Wang, Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method, Hydrometallurgy, 183(2019), p. 9. doi: 10.1016/j.hydromet.2018.10.020
      [79]
      H.D. Wang, A.N. Zhou, H. Guo, M.H. Lü, and H.Z. Yu, Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid, J. Cent. South Univ., 27(2020), No. 1, p. 27. doi: 10.1007/s11771-020-4275-4
      [80]
      H. Guo, M.H. Lv, G. Kuang, Y.J. Cao, and H.D. Wang, Stepwise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H2SO4 as lixiviant, Sep. Purif. Technol., 259(2021), art. No. 118194. doi: 10.1016/j.seppur.2020.118194
      [81]
      H. Guo, G. Kuang, H. Li, W.T. Pei, and H.D. Wang, Enhanced lithium leaching from lepidolite in continuous tubular reactor using H2SO4+H2SiF6 as lixiviant, Trans. Nonferrous Met. Soc. China, 31(2021), No. 7, p. 2165. doi: 10.1016/S1003-6326(21)65646-7
      [82]
      N. Vieceli, C.A. Nogueira, M.F.C. Pereira, et al., Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1. doi: 10.1016/j.mineng.2016.12.001
      [83]
      N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 11. doi: 10.1007/s12613-018-1541-7
      [84]
      N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite, Hydrometallurgy, 175(2018), p. 1. doi: 10.1016/j.hydromet.2017.10.022
      [85]
      X.F. Zhang, X.M. Tan, C. Li, Y.J. Yi, W.Z. Liu, and L.Z. Zhang, Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching, Hydrometallurgy, 185(2019), p. 244. doi: 10.1016/j.hydromet.2019.02.011
      [86]
      Y.B. Liu, B.Z. Ma, Y.W. Lv, C.Y. Wang, and Y.Q. Chen, Selective recovery and efficient separation of lithium, rubidium, and cesium from lepidolite ores, Sep. Purif. Technol., 288(2022), art. No. 120667. doi: 10.1016/j.seppur.2022.120667
      [87]
      Q.X. Yan, X.H. Li, Z.L. Yin, et al., A novel process for extracting lithium from lepidolite, Hydrometallurgy, 121-124(2012), p. 54. doi: 10.1016/j.hydromet.2012.04.006
      [88]
      Y.W. Lv, P. Xing, B.Z. Ma, et al., Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation, ACS Sustainable Chem. Eng., 8(2020), No. 38, p. 14462. doi: 10.1021/acssuschemeng.0c04437
      [89]
      Y.W. Lv, B.Z. Ma, Y.B. Liu, C.Y. Wang, and Y.Q. Chen, Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue, Microporous Mesoporous Mater., 329(2022), art. No. 111553. doi: 10.1016/j.micromeso.2021.111553
      [90]
      J. Mulwanda, G. Senanayake, H. Oskierski, M. Altarawneh, and B.Z. Dlugogorski, Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition, Hydrometallurgy, 201(2021), art. No. 105538. doi: 10.1016/j.hydromet.2020.105538
      [91]
      P.F.A. Braga, S.C.A. França, C.C. Gonçalves, P.F.V. Ferraz, and R. Neumann, Extraction of lithium from a montebrasite concentrate: Applied mineralogy, pyro- and hydrometallurgy, Hydrometallurgy, 191(2020), art. No. 105249. doi: 10.1016/j.hydromet.2020.105249
      [92]
      N. Setoudeh, A. Nosrati, and N.J. Welham, Lithium extraction from mechanically activated of petalite-Na2SO4 mixtures after isothermal heating, Miner. Eng., 151(2020), art. No. 106294. doi: 10.1016/j.mineng.2020.106294
      [93]
      A. Hermawan, T. Ohuchi, N. Fujimoto, and Y. Murase, Manufacture of composite board using wood prunings and waste porcelain stone, J. Wood Sci., 55(2009), No. 1, p. 74. doi: 10.1007/s10086-008-1000-6
      [94]
      J.L. Wang, H.Z. Hu, and K.Q. Wu, Extraction of lithium, rubidium and cesium from lithium porcelain stone, Hydrometallurgy, 191(2020), art. No. 105233. doi: 10.1016/j.hydromet.2019.105233
      [95]
      J.L. Wang, H.Z. Hu, and B.R. Ji, Selective extraction of Li, Rb, and Cs and precipitation of lithium carbonate directly from lithium porcelain stone, Russ. J. Non-Ferrous. Met., 61(2020), No. 2, p. 143. doi: 10.3103/S1067821220020133
      [96]
      H.N. Gu, T.F. Guo, H.J. Wen, et al., Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone, Miner. Eng., 145(2020), art. No. 106076. doi: 10.1016/j.mineng.2019.106076
      [97]
      M.Z. Mubarok, R.F. Madisaw, M.R. Kurniawan, and T. Hidayat, Experimental study of lithium extraction from a lithium-containing geothermal mud by hydrochloric acid leaching, J. Sustainable Metall., 7(2021), No. 3, p. 1254. doi: 10.1007/s40831-021-00415-6
      [98]
      Y.X. Mu, C.Y. Zhang, W. Zhang, and Y.X. Wang, Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes, Desalination, 511(2021), art. No. 115112. doi: 10.1016/j.desal.2021.115112
      [99]
      Z.W. Zhao, G. Liu, H. Jia, and L.H. He, Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio, J. Membr. Sci., 596(2020), art. No. 117685. doi: 10.1016/j.memsci.2019.117685
      [100]
      X.J. Pan, Z.H. Dou, D.L. Meng, X.X. Han, and T.A. Zhang, Electrochemical separation of magnesium from solutions of magnesium and lithium chloride, Hydrometallurgy, 191(2020), art. No. 105166. doi: 10.1016/j.hydromet.2019.105166
      [101]
      J. Chen, S. Lin, and J.G. Yu, Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines, J. Hazard. Mater., 388(2020), art. No. 122101. doi: 10.1016/j.jhazmat.2020.122101
      [102]
      A. Battistel, M.S. Palagonia, D. Brogioli, F. la Mantia, and R. Trócoli, Electrochemical methods for lithium recovery: A comprehensive and critical review, Adv. Mater., 32(2020), No. 23, art. No. e1905440. doi: 10.1002/adma.201905440
      [103]
      E.J. Calvo, Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling, Curr. Opin. Electrochem., 15(2019), p. 102. doi: 10.1016/j.coelec.2019.04.010
      [104]
      Z.W. Zhao, X.F. Si, X.H. Liu, L.H. He, and X.X. Liang, Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials, Hydrometallurgy, 133(2013), p. 75. doi: 10.1016/j.hydromet.2012.11.013
      [105]
      D.F. Liu, Z.W. Zhao, W.H. Xu, J.C. Xiong, and L.H. He, A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation, Desalination, 519(2021), art. No. 115302. doi: 10.1016/j.desal.2021.115302
      [106]
      J.C. Xiong, L.H. He, D.F. Liu, W.H. Xu, and Z.W. Zhao, Olivine-FePO4 preparation for lithium extraction from brines via Electrochemical De-intercalation/Intercalation method, Desalination, 520(2021), art. No. 115326. doi: 10.1016/j.desal.2021.115326
      [107]
      J.C. Xiong, L.H. He, and Z.W. Zhao, Lithium extraction from high-sodium raw brine with Li0.3FePO4 electrode, Desalination, 535(2022), art. No. 115822. doi: 10.1016/j.desal.2022.115822
      [108]
      J.C. Xiong, Z.W. Zhao, D.F. Liu, and L.H. He, Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials, Sep. Purif. Technol., 290(2022), art. No. 120789. doi: 10.1016/j.seppur.2022.120789
      [109]
      W.H. Xu, L.H. He, and Z.W. Zhao, Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials, Desalination, 503(2021), art. No. 114935. doi: 10.1016/j.desal.2021.114935
      [110]
      D.F. Liu, W.H. Xu, J.C. Xiong, L.H. He, and Z.W. Zhao, Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics, Sep. Purif. Technol., 270(2021), art. No. 118809. doi: 10.1016/j.seppur.2021.118809
      [111]
      Z.Y. Guo, Z.Y. Ji, J. Wang, X.F. Guo, and J.S. Liang, Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage, Desalination, 533(2022), art. No. 115767. doi: 10.1016/j.desal.2022.115767
      [112]
      G.L. Luo, L. Zhu, X.W. Li, et al., Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode, J. Energy Chem., 69(2022), p. 244. doi: 10.1016/j.jechem.2022.01.012
      [113]
      J.S. Yuan, H.B. Yin, Z.Y. Ji, and H.N. Deng, Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate, Ind. Eng. Chem. Res., 53(2014), No. 23, p. 9889. doi: 10.1021/ie501098e
      [114]
      R. Pulido, N. Naveas, R. J Martín-Palma, et al., Experimental and density functional theory study of the Li+ desorption in spinel/layered lithium manganese oxide nanocomposites using HCl, Chem. Eng. J., 441(2022), art. No. 136019. doi: 10.1016/j.cej.2022.136019
      [115]
      J.L. Xiao, X.Y. Nie, S.Y. Sun, X.F. Song, P. Li, and J.G. Yu, Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model, Adv. Powder Technol., 26(2015), No. 2, p. 589. doi: 10.1016/j.apt.2015.01.008
      [116]
      H.Y. Lin, X.P. Yu, M.L. Li, J. Duo, Y.F. Guo, and T.L. Deng, Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water, ACS Appl. Mater. Interfaces, 11(2019), No. 29, p. 26364. doi: 10.1021/acsami.9b07401
      [117]
      M.X. Liu, D. Wu, D.L. Qin, and G. Yang, Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance, Chin. J. Chem. Eng., 45(2022), p. 258. doi: 10.1016/j.cjche.2021.07.003
      [118]
      S.D. Wei, Y.F. Wei, T. Chen, C.B. Liu, and Y.H. Tang, Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water, Chem. Eng. J., 379(2020), art. No. 122407. doi: 10.1016/j.cej.2019.122407
      [119]
      X.W. Li, L.L. Chen, Y.H. Chao, et al., Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene, Desalination, 537(2022), art. No. 115847. doi: 10.1016/j.desal.2022.115847
      [120]
      T. Ryu, J. Shin, S.M. Ghoreishian, K.S. Chung, and Y.S. Huh, Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite, Hydrometallurgy, 184(2019), p. 22. doi: 10.1016/j.hydromet.2018.12.012
      [121]
      M.P. Paranthaman, L. Li, J.Q. Luo, et al., Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents, Environ. Sci. Technol., 51(2017), No. 22, p. 13481. doi: 10.1021/acs.est.7b03464
      [122]
      T.M. Yu, A. Caroline Reis Meira, J. Cristina Kreutz, et al., Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum: An alternative material for sorption and catalytic purposes, Appl. Surf. Sci., 467-468(2019), p. 1195. doi: 10.1016/j.apsusc.2018.10.221
      [123]
      S.S. Xu, J.F. Song, Q.Y. Bi, et al., Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice, J. Membr. Sci., 635(2021), art. No. 119441. doi: 10.1016/j.memsci.2021.119441
      [124]
      X.Y. Nie, S.Y. Sun, Z. Sun, X.F. Song, and J.G. Yu, Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes, Desalination, 403(2017), p. 128. doi: 10.1016/j.desal.2016.05.010
      [125]
      Z.Y. Guo, Z.Y. Ji, Q.B. Chen, et al., Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes, J. Clean. Prod., 193(2018), p. 338. doi: 10.1016/j.jclepro.2018.05.077
      [126]
      G. Liu, Z.W. Zhao, and L.H. He, Highly selective lithium recovery from high Mg/Li ratio brines, Desalination, 474(2020), art. No. 114185. doi: 10.1016/j.desal.2019.114185
      [127]
      W.H. Shi, X.Y. Liu, C.Z. Ye, X.H. Cao, C.J. Gao, and J.N. Shen, Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane, Sep. Purif. Technol., 210(2019), p. 885. doi: 10.1016/j.seppur.2018.09.006
      [128]
      J. Hou, H.C. Zhang, A.W. Thornton, A.J. Hill, H.T. Wang, and K. Konstas, Lithium extraction by emerging metal–organic framework-based membranes, Adv. Funct. Mater., 31(2021), No. 46, art. No. 2105991. doi: 10.1002/adfm.202105991
      [129]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [130]
      L.M. Ji, Y.H. Hu, L.J. Li, et al., Lithium extraction with a synergistic system of dioctyl phthalate and tributyl phosphate in kerosene and FeCl3, Hydrometallurgy, 162(2016), p. 71. doi: 10.1016/j.hydromet.2016.02.018
      [131]
      Q. Sun, H. Chen, and J.G. Yu, Investigation on the lithium extraction process with the TBP–FeCl3 solvent system using experimental and DFT methods, Ind. Eng. Chem. Res., 61(2022), No. 13, p. 4672. doi: 10.1021/acs.iecr.1c05072
      [132]
      X.P. Yu, X.B. Fan, Y.F. Guo, and T.L. Deng, Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate, Sep. Purif. Technol., 211(2019), p. 790. doi: 10.1016/j.seppur.2018.10.054
      [133]
      C.Q. Cai, T. Hanada, A.T.N. Fajar, and M. Goto, An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes, Desalination, 509(2021), art. No. 115073. doi: 10.1016/j.desal.2021.115073
      [134]
      X.H. Liu, M.L. Zhong, X.Y. Chen, J.T. Li, L.H. He, and Z.W. Zhao, Enriching lithium and separating lithium to magnesium from sulfate type salt lake brine, Hydrometallurgy, 192(2020), art. No. 105247. doi: 10.1016/j.hydromet.2020.105247
      [135]
      D.F. Liu, Z. Li, L.H. He, and Z.W. Zhao, Facet engineered Li3PO4 for lithium recovery from brines, Desalination, 514(2021), art. No. 115186. doi: 10.1016/j.desal.2021.115186

    Catalog


    • /

      返回文章
      返回