Cite this article as: |
Yubo Liu, Baozhong Ma, Yingwei Lü, Chengyan Wang, and Yongqiang Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 209-224. https://doi.org/10.1007/s12613-022-2544-y |
马保中 E-mail: bzhma_ustb@yeah.net
王成彦 E-mail: chywang@yeah.net
[1] |
S. Ferrari, M. Falco, A.B. Munoz-Garcia, et al., Solid-state post Li metal ion batteries: A sustainable forthcoming reality?, Adv. Energy Mater., 11(2021), No. 43, art. No. 2100785. doi: 10.1002/aenm.202100785
|
[2] |
Y.B. Liu, B.Z. Ma, Y.W. Lv, C.Y. Wang, and Y.Q. Chen, Thorough extraction of lithium and rubidium from lepidolite via thermal activation and acid leaching, Miner. Eng., 178(2022), art. No. 107407. doi: 10.1016/j.mineng.2022.107407
|
[3] |
A. Karrech, M.R. Azadi, M. Elchalakani, M.A. Shahin, and A.C. Seibi, A review on methods for liberating lithium from pegmatities, Miner. Eng., 145(2020), art. No. 106085. doi: 10.1016/j.mineng.2019.106085
|
[4] |
S.E. Kesler, P.W. Gruber, P.A. Medina, et al., Global lithium resources: Relative importance of pegmatite, brine and other deposits, Ore Geol. Rev., 48(2012), p. 55. doi: 10.1016/j.oregeorev.2012.05.006
|
[5] |
Z. Li, H.N. Gu, H. Wen, and Y.Q. Yang, Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process, Hydrometallurgy, 206(2021), art. No. 105759. doi: 10.1016/j.hydromet.2021.105759
|
[6] |
U.S Geological Survey, Mineral Commodity Summaries 2022, U.S. Geological Survey, 2022 [2022-07-10]. https://doi.org/10.3133/mcs2022
|
[7] |
F. Meng, J. McNeice, S.S. Zadeh, and A. Ghahreman, Review of lithium production and recovery from minerals, brines, and lithium-ion batteries, Miner. Process. Extr. Metall. Rev., 42(2021), No. 2, p. 123. doi: 10.1080/08827508.2019.1668387
|
[8] |
J.C. Kelly, M. Wang, Q. Dai, and O. Winjobi, Energy, greenhouse gas, and water life cycle analysis of lithium carbonate and lithium hydroxide monohydrate from brine and ore resources and their use in lithium ion battery cathodes and lithium ion batteries, Resour. Conserv. Recycl., 174(2021), art. No. 105762. doi: 10.1016/j.resconrec.2021.105762
|
[9] |
Y. Kim, Y. Han, S. Kim, and H.S. Jeon, Green extraction of lithium from waste lithium aluminosilicate glass-ceramics using a water leaching process, Process Saf. Environ. Prot., 148(2021), p. 765. doi: 10.1016/j.psep.2021.02.001
|
[10] |
J. Li, J. Kong, Q.S. Zhu, and H.Z. Li, In-situ capturing of fluorine with CaO for accelerated defluorination roasting of lepidolite in a fluidized bed reactor, Powder Technol., 353(2019), p. 498. doi: 10.1016/j.powtec.2019.05.063
|
[11] |
S.M. Zhang, G.J. Yang, X.Y. Li, et al., Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 953. doi: 10.1007/s12613-022-2442-3
|
[12] |
M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
|
[13] |
W. Liu, J.X. Li, H.Y. Xu, J. Li, and X.P. Qiu, Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 917. doi: 10.1007/s12613-022-2483-7
|
[14] |
N. Li, S.Q. Yang, H.S. Chen, S.Q. Jiao, and W.L. Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1019. doi: 10.1007/s12613-022-2486-4
|
[15] |
M. Goto, K. Okumura, S. Nakagawa, et al., Nuclear and thermal feasibility of lithium-loaded high temperature gas-cooled reactor for tritium production for fusion reactors, Fusion Eng. Des., 136(2018), p. 357. doi: 10.1016/j.fusengdes.2018.02.029
|
[16] |
A.Y. Konobeyev, Y.A. Korovin, P.E. Pereslavtsev, U. Fischer, and U. von Möllendorff, Development of methods for calculation of deuteron-lithium and neutron-lithium cross sections for energies up to 50 MeV, Nucl. Sci. Eng., 139(2001), No. 1, p. 1. doi: 10.13182/NSE00-31
|
[17] |
A. Youssef, R. Anwar, I.I. Bashter, E.A. Amin, and S.M. Reda, Neutron yield as a measure of achievement nuclear fusion using a mixture of deuterium and tritium isotopes, Phys. Scripta., 97(2022), No. 8, art. No. 085601. doi: 10.1088/1402-4896/ac7b4f
|
[18] |
E. Stefanelli, M. Puccini, A. Pesetti, R. Lo Frano, and D. Aquaro, Lithium orthosilicate as nuclear fusion breeder material: Optimization of the drip casting production technology, Nucl. Mater. Energy, 30(2022), art. No. 101131. doi: 10.1016/j.nme.2022.101131
|
[19] |
C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
|
[20] |
J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
|
[21] |
H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1715. doi: 10.1007/s12613-021-2366-3
|
[22] |
B. Tadesse, F. Makuei, B. Albijanic, and L. Dyer, The beneficiation of lithium minerals from hard rock ores: A review, Miner. Eng., 131(2019), p. 170. doi: 10.1016/j.mineng.2018.11.023
|
[23] |
N.K. Salakjani, P. Singh, and A.N. Nikoloski, Production of lithium - A literature review part 1: Pretreatment of spodumene, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 335. doi: 10.1080/08827508.2019.1643343
|
[24] |
C. Grosjean, P.H. Miranda, M. Perrin, and P. Poggi, Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry, Renewable Sustainable Energy Rev., 16(2012), No. 3, p. 1735. doi: 10.1016/j.rser.2011.11.023
|
[25] |
K.S. Moon and D.W. Fuerstenau, Surface crystal chemistry in selective flotation of spodumene (LiAl[SiO3]2) from other aluminosilicates, Int. J. Miner. Process., 72(2003), No. 1-4, p. 11. doi: 10.1016/S0301-7516(03)00084-X
|
[26] |
H. Hao, Z.W. Liu, F.Q. Zhao, Y. Geng, and J. Sarkis, Material flow analysis of lithium in China, Resour. Policy, 51(2017), p. 100. doi: 10.1016/j.resourpol.2016.12.005
|
[27] |
N.K. Salakjani, P. Singh, and A.N. Nikoloski, Production of lithium-A literature review. part 2. extraction from spodumene, Miner. Process. Extr. Metall. Rev., 42(2021), No. 4, p. 268. doi: 10.1080/08827508.2019.1700984
|
[28] |
V.I. Samoilov, N.A. Kulenova, Z.V. Sheregeda, L.G. Gadylbekova, V.A. Agapov, and L.V. Shushkevich, Integrated processing of spodumene in hydrometallurgy, Russ. J. Appl. Chem., 81(2008), No. 3, p. 494. doi: 10.1134/S1070427208030312
|
[29] |
V.I. Samoilov, A.N. Borsuk, and N.A. Kulenova, Industrial methods for the integrated processing of minerals that contain beryllium and lithium, Metallurgist, 53(2009), No. 1-2, p. 53. doi: 10.1007/s11015-009-9137-0
|
[30] |
D. Yelatontsev and A. Mukhachev, Processing of lithium ores: Industrial technologies and case studies - A review, Hydrometallurgy, 201(2021), art. No. 105578. doi: 10.1016/j.hydromet.2021.105578
|
[31] |
J. Rioyo, S. Tuset, and R. Grau, Lithium extraction from spodumene by the traditional sulfuric acid process: A review, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 97. doi: 10.1080/08827508.2020.1798234
|
[32] |
O. Peltosaari, P. Tanskanen, S. Hautala, E.P. Heikkinen, and T. Fabritius, Mechanical enrichment of converted spodumene by selective sieving, Miner. Eng., 98(2016), p. 30. doi: 10.1016/j.mineng.2016.07.010
|
[33] |
S.B. Qiu, C.L. Liu, and J.G. Yu, Conversion from α-spodumene to intermediate product Li2SiO3 by hydrothermal alkaline treatment in the lithium extraction process, Miner. Eng., 183(2022), art. No. 107599. doi: 10.1016/j.mineng.2022.107599
|
[34] |
C. Dessemond, G. Soucy, J.P. Harvey, and P. Ouzilleau, Phase transitions in the α–γ–β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching, Minerals, 10(2020), No. 6, art. No. 519. doi: 10.3390/min10060519
|
[35] |
F. Lajoie-Leroux, C. Dessemond, G. Soucy, N. Laroche, and J.F. Magnan, Impact of the impurities on lithium extraction from β-spodumene in the sulfuric acid process, Miner. Eng., 129(2018), p. 1. doi: 10.1016/j.mineng.2018.09.011
|
[36] |
H. Li, J. Eksteen, and G. Kuang, Recovery of lithium from mineral resources: State-of-the-art and perspectives - A review, Hydrometallurgy, 189(2019), art. No. 105129. doi: 10.1016/j.hydromet.2019.105129
|
[37] |
E. Gasafi and R. Pardemann, Processing of spodumene concentrates in fluidized-bed systems, Miner. Eng., 148(2020), art. No. 106205. doi: 10.1016/j.mineng.2020.106205
|
[38] |
N.P. Kotsupalo, L.T. Menzheres, A.D. Ryabtsev, and V.V. Boldyrev, Mechanical activation of α-spodumene for further processing into lithium compounds, Theor. Found. Chem. Eng., 44(2010), No. 4, p. 503. doi: 10.1134/S0040579510040251
|
[39] |
N.K. Salakjani, P. Singh, and A.N. Nikoloski, Acid roasting of spodumene: Microwave vs. conventional heating, Miner. Eng., 138(2019), p. 161. doi: 10.1016/j.mineng.2019.05.003
|
[40] |
H. Guo, G. Kuang, H.D. Wang, H.Z. Yu, and X.K. Zhao, Investigation of enhanced leaching of lithium from α-spodumene using hydrofluoric and sulfuric acid, Minerals, 7(2017), No. 11, art. No. 205. doi: 10.3390/min7110205
|
[41] |
H. Guo, H.Z. Yu, A.N. Zhou, et al., Kinetics of leaching lithium from α-spodumene in enhanced acid treatment using HF/H2SO4 as medium, Trans. Nonferrous Met. Soc. China, 29(2019), No. 2, p. 407. doi: 10.1016/S1003-6326(19)64950-2
|
[42] |
H. Guo, M.H. Lv, G. Kuang, and H.D. Wang, Enhanced lithium extraction from α-spodumene with fluorine-based chemical method: A stepwise heat treatment for fluorine removal, Miner. Eng., 174(2021), art. No. 107246. doi: 10.1016/j.mineng.2021.107246
|
[43] |
G. Rosales, M. Ruiz, and M. Rodriguez, Study of the extraction kinetics of lithium by leaching β-spodumene with hydrofluoric acid, Minerals, 6(2016), No. 4, art. No. 98. doi: 10.3390/min6040098
|
[44] |
G.D. Rosales, M.D.C. Ruiz, and M.H. Rodriguez, Novel process for the extraction of lithium from β-spodumene by leaching with HF, Hydrometallurgy, 147-148(2014), p. 1. doi: 10.1016/j.hydromet.2014.04.009
|
[45] |
Y. Chen, Q.Q. Tian, B.Z. Chen, X.C. Shi, and T. Liao, Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process, Hydrometallurgy, 109(2011), No. 1-2, p. 43. doi: 10.1016/j.hydromet.2011.05.006
|
[46] |
G. Kuang, Y. Liu, H. Li, S.Z. Xing, F.J. Li, and H. Guo, Extraction of lithium from β-spodumene using sodium sulfate solution, Hydrometallurgy, 177(2018), p. 49. doi: 10.1016/j.hydromet.2018.02.015
|
[47] |
Y.F. Song, T.Y. Zhao, L.H. He, Z.W. Zhao, and X.H. Liu, A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate, Hydrometallurgy, 189(2019), art. No. 105141. doi: 10.1016/j.hydromet.2019.105141
|
[48] |
P. Xing, C.Y. Wang, L. Zeng, et al., Lithium extraction and hydroxysodalite zeolite synthesis by hydrothermal conversion of α-spodumene, ACS Sustainable Chem. Eng., 7(2019), No. 10, p. 9498. doi: 10.1021/acssuschemeng.9b00923
|
[49] |
G.D. Rosales, A.C.J. Resentera, J.A. Gonzalez, R.G. Wuilloud, and M.H. Rodriguez, Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching, Chem. Eng. Res. Des., 150(2019), p. 320. doi: 10.1016/j.cherd.2019.08.009
|
[50] |
L.L.D. Santos, R.M.D. Nascimento, and S.B.C. Pergher, Beta-spodumene:Na2CO3:NaCl system calcination: A kinetic study of the conversion to lithium salt, Chem. Eng. Res. Des., 147(2019), p. 338. doi: 10.1016/j.cherd.2019.05.019
|
[51] |
M.L. Grasso, J.A. González, and F.C. Gennari, Lithium extraction from β-LiAlSi2O6 using Na2CO3 through thermal reaction, Miner. Eng., 176(2022), art. No. 107349. doi: 10.1016/j.mineng.2021.107349
|
[52] |
L.I. Barbosa, N.G. Valente, and J.A. González, Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas, Thermochim. Acta, 557(2013), p. 61. doi: 10.1016/j.tca.2013.01.033
|
[53] |
L.I. Barbosa, G. Valente, R.P. Orosco, and J.A. González, Lithium extraction from β-spodumene through chlorination with chlorine gas, Miner. Eng., 56(2014), p. 29. doi: 10.1016/j.mineng.2013.10.026
|
[54] |
L.I. Barbosa, J.A. González, and M.D.C. Ruiz, Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride, Thermochim. Acta, 605(2015), p. 63. doi: 10.1016/j.tca.2015.02.009
|
[55] |
A.C. Resentera, G.D. Rosales, M.R. Esquivel, and M.H. Rodriguez, Thermal and structural analysis of the reaction pathways of α-spodumene with NH4HF2, Thermochim. Acta, 689(2020), art. No. 178609. doi: 10.1016/j.tca.2020.178609
|
[56] |
A.C. Resentera, M.R. Esquivel, and M.H. Rodriguez, Low-temperature lithium extraction from α-spodumene with NH4HF2: Modeling and optimization by least squares and artificial neural networks, Chem. Eng. Res. Des., 167(2021), p. 73. doi: 10.1016/j.cherd.2020.12.023
|
[57] |
N. Setoudeh, A. Nosrati, and N.J. Welham, Phase changes in mechanically activated spodumene-Na2SO4 mixtures after isothermal heating, Miner. Eng., 155(2020), art. No. 106455. doi: 10.1016/j.mineng.2020.106455
|
[58] |
T. Ncube, H. Oskierski, G. Senanayake, and B.Z. Dlugogorski, Two-step reaction mechanism of roasting spodumene with potassium sulfate, Inorg. Chem., 60(2021), No. 6, p. 3620. doi: 10.1021/acs.inorgchem.0c03125
|
[59] |
B. Swain, Recovery and recycling of lithium: A review, Sep. Purif. Technol., 172(2017), p. 388. doi: 10.1016/j.seppur.2016.08.031
|
[60] |
P. Xing, C.Y. Wang, Y.Q. Chen, and B.Z. Ma, Rubidium extraction from mineral and brine resources: A review, Hydrometallurgy, 203(2021), art. No. 105644. doi: 10.1016/j.hydromet.2021.105644
|
[61] |
S. Reichel, T. Aubel, A. Patzig, E. Janneck, and M. Martin, Lithium recovery from lithium-containing micas using sulfur oxidizing microorganisms, Miner. Eng., 106(2017), p. 18. doi: 10.1016/j.mineng.2017.02.012
|
[62] |
V.T. Luong, D.J. Kang, J.W. An, M.J. Kim, and T. Tran, Factors affecting the extraction of lithium from lepidolite, Hydrometallurgy, 134-135(2013), p. 54. doi: 10.1016/j.hydromet.2013.01.015
|
[63] |
N. Setoudeh, A. Nosrati, and N.J. Welham, Lithium recovery from mechanically activated mixtures of lepidolite and sodium sulfate, Miner. Process. Extr. Metall., 130(2021), No. 4, p. 354. doi: 10.1080/25726641.2019.1649112
|
[64] |
N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates, Miner. Process. Extr. Metall. Rev., 38(2017), No. 1, p. 62. doi: 10.1080/08827508.2016.1262858
|
[65] |
Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of lithium from lepidolite by sulfation roasting and water leaching, Int. J. Miner. Process., 110-111(2012), p. 1. doi: 10.1016/j.minpro.2012.03.005
|
[66] |
H. Su, J.Y. Ju, J. Zhang, A.F. Yi, Z. Lei, L.N. Wang, Z.W. Zhu, and T. Qi, Lithium recovery from lepidolite roasted with potassium compounds, Miner. Eng., 145(2020), art. No. 106087. doi: 10.1016/j.mineng.2019.106087
|
[67] |
V.T. Luong, D.J. Kang, J.W. An, D.A. Dao, M.J. Kim, and T. Tran, Iron sulphate roasting for extraction of lithium from lepidolite, Hydrometallurgy, 141(2014), p. 8. doi: 10.1016/j.hydromet.2013.09.016
|
[68] |
X.F. Zhang, Z.C. Chen, S. Rohani, M.Y. He, X.M. Tan, and W.Z. Liu, Simultaneous extraction of lithium, rubidium, cesium and potassium from lepidolite via roasting with iron(II) sulfate followed by water leaching, Hydrometallurgy, 208(2022), art. No. 105820. doi: 10.1016/j.hydromet.2022.105820
|
[69] |
Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of lithium from lepidolite using chlorination roasting-water leaching process, Trans. Nonferrous Met. Soc. China, 22(2012), No. 7, p. 1753. doi: 10.1016/S1003-6326(11)61383-6
|
[70] |
K.I. Omoniyi, P.I. Agaku, and A.A. Baba, Optimal hydrometallurgical extraction conditions for lithium extraction from a nigerian polylithionite ore for industrial application, [in] G. Azimi, K. Forsberg, T. Ouchi, H. Kim, S. Alam, and A. Baba, eds, Rare Metal Technology 2020. The Minerals, Metals & Materials Series, Springer, Cham, 2020, p. 33.
|
[71] |
X.F. Zhang, T. Aldahri, X.M. Tan, W.Z. Liu, L.Z. Zhang, and S.W. Tang, Efficient co-extraction of lithium, rubidium, cesium and potassium from lepidolite by process intensification of chlorination roasting, Chem. Eng. Process. Process Intensif., 147(2020), art. No. 107777. doi: 10.1016/j.cep.2019.107777
|
[72] |
Q.X. Yan, X.H. Li, Z.X. Wang, et al., Extraction of valuable metals from lepidolite, Hydrometallurgy, 117-118(2012), p. 116. doi: 10.1016/j.hydromet.2012.02.004
|
[73] |
Y.Q. Kuai, W.G. Yao, H.W. Ma, M.T. Liu, Y. Gao, and R.Y. Guo, Recovery lithium and potassium from lepidolite via potash calcination-leaching process, Miner. Eng., 160(2021), art. No. 106643. doi: 10.1016/j.mineng.2020.106643
|
[74] |
J.L. Liu, Z.L. Yin, X.H. Li, Q.Y. Hu, and W. Liu, Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium, Trans. Nonferrous Met. Soc. China, 29(2019), No. 3, p. 641. doi: 10.1016/S1003-6326(19)64974-5
|
[75] |
J.L. Liu, Z.L. Yin, W. Liu, X.H. Li, and Q.Y. Hu, Treatment of aluminum and fluoride during hydrochloric acid leaching of lepidolite, Hydrometallurgy, 191(2020), art. No. 105222. doi: 10.1016/j.hydromet.2019.105222
|
[76] |
L. Rentsch, G. Martin, M. Bertau, and M. Höck, Lithium extracting from zinnwaldite: Economical comparison of an adapted spodumene and a direct-carbonation process, Chem. Eng. Technol., 41(2018), No. 5, p. 975. doi: 10.1002/ceat.201700604
|
[77] |
G.D. Rosales, E.G. Pinna, D.S. Suarez, and M.H. Rodriguez, Recovery process of Li, Al and Si from lepidolite by leaching with HF, Minerals, 7(2017), No. 3, art. No. 36. doi: 10.3390/min7030036
|
[78] |
H. Guo, G. Kuang, H. Wan, Y. Yang, H.Z. Yu, and H.D. Wang, Enhanced acid treatment to extract lithium from lepidolite with a fluorine-based chemical method, Hydrometallurgy, 183(2019), p. 9. doi: 10.1016/j.hydromet.2018.10.020
|
[79] |
H.D. Wang, A.N. Zhou, H. Guo, M.H. Lü, and H.Z. Yu, Kinetics of leaching lithium from lepidolite using mixture of hydrofluoric and sulfuric acid, J. Cent. South Univ., 27(2020), No. 1, p. 27. doi: 10.1007/s11771-020-4275-4
|
[80] |
H. Guo, M.H. Lv, G. Kuang, Y.J. Cao, and H.D. Wang, Stepwise heat treatment for fluorine removal on selective leachability of Li from lepidolite using HF/H2SO4 as lixiviant, Sep. Purif. Technol., 259(2021), art. No. 118194. doi: 10.1016/j.seppur.2020.118194
|
[81] |
H. Guo, G. Kuang, H. Li, W.T. Pei, and H.D. Wang, Enhanced lithium leaching from lepidolite in continuous tubular reactor using H2SO4+H2SiF6 as lixiviant, Trans. Nonferrous Met. Soc. China, 31(2021), No. 7, p. 2165. doi: 10.1016/S1003-6326(21)65646-7
|
[82] |
N. Vieceli, C.A. Nogueira, M.F.C. Pereira, et al., Effects of mechanical activation on lithium extraction from a lepidolite ore concentrate, Miner. Eng., 102(2017), p. 1. doi: 10.1016/j.mineng.2016.12.001
|
[83] |
N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 11. doi: 10.1007/s12613-018-1541-7
|
[84] |
N. Vieceli, C.A. Nogueira, M.F.C. Pereira, F.O. Durão, C. Guimarães, and F. Margarido, Recovery of lithium carbonate by acid digestion and hydrometallurgical processing from mechanically activated lepidolite, Hydrometallurgy, 175(2018), p. 1. doi: 10.1016/j.hydromet.2017.10.022
|
[85] |
X.F. Zhang, X.M. Tan, C. Li, Y.J. Yi, W.Z. Liu, and L.Z. Zhang, Energy-efficient and simultaneous extraction of lithium, rubidium and cesium from lepidolite concentrate via sulfuric acid baking and water leaching, Hydrometallurgy, 185(2019), p. 244. doi: 10.1016/j.hydromet.2019.02.011
|
[86] |
Y.B. Liu, B.Z. Ma, Y.W. Lv, C.Y. Wang, and Y.Q. Chen, Selective recovery and efficient separation of lithium, rubidium, and cesium from lepidolite ores, Sep. Purif. Technol., 288(2022), art. No. 120667. doi: 10.1016/j.seppur.2022.120667
|
[87] |
Q.X. Yan, X.H. Li, Z.L. Yin, et al., A novel process for extracting lithium from lepidolite, Hydrometallurgy, 121-124(2012), p. 54. doi: 10.1016/j.hydromet.2012.04.006
|
[88] |
Y.W. Lv, P. Xing, B.Z. Ma, et al., Efficient extraction of lithium and rubidium from polylithionite via alkaline leaching combined with solvent extraction and precipitation, ACS Sustainable Chem. Eng., 8(2020), No. 38, p. 14462. doi: 10.1021/acssuschemeng.0c04437
|
[89] |
Y.W. Lv, B.Z. Ma, Y.B. Liu, C.Y. Wang, and Y.Q. Chen, Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue, Microporous Mesoporous Mater., 329(2022), art. No. 111553. doi: 10.1016/j.micromeso.2021.111553
|
[90] |
J. Mulwanda, G. Senanayake, H. Oskierski, M. Altarawneh, and B.Z. Dlugogorski, Leaching of lepidolite and recovery of lithium hydroxide from purified alkaline pressure leach liquor by phosphate precipitation and lime addition, Hydrometallurgy, 201(2021), art. No. 105538. doi: 10.1016/j.hydromet.2020.105538
|
[91] |
P.F.A. Braga, S.C.A. França, C.C. Gonçalves, P.F.V. Ferraz, and R. Neumann, Extraction of lithium from a montebrasite concentrate: Applied mineralogy, pyro- and hydrometallurgy, Hydrometallurgy, 191(2020), art. No. 105249. doi: 10.1016/j.hydromet.2020.105249
|
[92] |
N. Setoudeh, A. Nosrati, and N.J. Welham, Lithium extraction from mechanically activated of petalite-Na2SO4 mixtures after isothermal heating, Miner. Eng., 151(2020), art. No. 106294. doi: 10.1016/j.mineng.2020.106294
|
[93] |
A. Hermawan, T. Ohuchi, N. Fujimoto, and Y. Murase, Manufacture of composite board using wood prunings and waste porcelain stone, J. Wood Sci., 55(2009), No. 1, p. 74. doi: 10.1007/s10086-008-1000-6
|
[94] |
J.L. Wang, H.Z. Hu, and K.Q. Wu, Extraction of lithium, rubidium and cesium from lithium porcelain stone, Hydrometallurgy, 191(2020), art. No. 105233. doi: 10.1016/j.hydromet.2019.105233
|
[95] |
J.L. Wang, H.Z. Hu, and B.R. Ji, Selective extraction of Li, Rb, and Cs and precipitation of lithium carbonate directly from lithium porcelain stone, Russ. J. Non-Ferrous. Met., 61(2020), No. 2, p. 143. doi: 10.3103/S1067821220020133
|
[96] |
H.N. Gu, T.F. Guo, H.J. Wen, et al., Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone, Miner. Eng., 145(2020), art. No. 106076. doi: 10.1016/j.mineng.2019.106076
|
[97] |
M.Z. Mubarok, R.F. Madisaw, M.R. Kurniawan, and T. Hidayat, Experimental study of lithium extraction from a lithium-containing geothermal mud by hydrochloric acid leaching, J. Sustainable Metall., 7(2021), No. 3, p. 1254. doi: 10.1007/s40831-021-00415-6
|
[98] |
Y.X. Mu, C.Y. Zhang, W. Zhang, and Y.X. Wang, Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes, Desalination, 511(2021), art. No. 115112. doi: 10.1016/j.desal.2021.115112
|
[99] |
Z.W. Zhao, G. Liu, H. Jia, and L.H. He, Sandwiched liquid-membrane electrodialysis: Lithium selective recovery from salt lake brines with high Mg/Li ratio, J. Membr. Sci., 596(2020), art. No. 117685. doi: 10.1016/j.memsci.2019.117685
|
[100] |
X.J. Pan, Z.H. Dou, D.L. Meng, X.X. Han, and T.A. Zhang, Electrochemical separation of magnesium from solutions of magnesium and lithium chloride, Hydrometallurgy, 191(2020), art. No. 105166. doi: 10.1016/j.hydromet.2019.105166
|
[101] |
J. Chen, S. Lin, and J.G. Yu, Quantitative effects of Fe3O4 nanoparticle content on Li+ adsorption and magnetic recovery performances of magnetic lithium-aluminum layered double hydroxides in ultrahigh Mg/Li ratio brines, J. Hazard. Mater., 388(2020), art. No. 122101. doi: 10.1016/j.jhazmat.2020.122101
|
[102] |
A. Battistel, M.S. Palagonia, D. Brogioli, F. la Mantia, and R. Trócoli, Electrochemical methods for lithium recovery: A comprehensive and critical review, Adv. Mater., 32(2020), No. 23, art. No. e1905440. doi: 10.1002/adma.201905440
|
[103] |
E.J. Calvo, Electrochemical methods for sustainable recovery of lithium from natural brines and battery recycling, Curr. Opin. Electrochem., 15(2019), p. 102. doi: 10.1016/j.coelec.2019.04.010
|
[104] |
Z.W. Zhao, X.F. Si, X.H. Liu, L.H. He, and X.X. Liang, Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials, Hydrometallurgy, 133(2013), p. 75. doi: 10.1016/j.hydromet.2012.11.013
|
[105] |
D.F. Liu, Z.W. Zhao, W.H. Xu, J.C. Xiong, and L.H. He, A closed-loop process for selective lithium recovery from brines via electrochemical and precipitation, Desalination, 519(2021), art. No. 115302. doi: 10.1016/j.desal.2021.115302
|
[106] |
J.C. Xiong, L.H. He, D.F. Liu, W.H. Xu, and Z.W. Zhao, Olivine-FePO4 preparation for lithium extraction from brines via Electrochemical De-intercalation/Intercalation method, Desalination, 520(2021), art. No. 115326. doi: 10.1016/j.desal.2021.115326
|
[107] |
J.C. Xiong, L.H. He, and Z.W. Zhao, Lithium extraction from high-sodium raw brine with Li0.3FePO4 electrode, Desalination, 535(2022), art. No. 115822. doi: 10.1016/j.desal.2022.115822
|
[108] |
J.C. Xiong, Z.W. Zhao, D.F. Liu, and L.H. He, Direct lithium extraction from raw brine by chemical redox method with LiFePO4/FePO4 materials, Sep. Purif. Technol., 290(2022), art. No. 120789. doi: 10.1016/j.seppur.2022.120789
|
[109] |
W.H. Xu, L.H. He, and Z.W. Zhao, Lithium extraction from high Mg/Li brine via electrochemical intercalation/de-intercalation system using LiMn2O4 materials, Desalination, 503(2021), art. No. 114935. doi: 10.1016/j.desal.2021.114935
|
[110] |
D.F. Liu, W.H. Xu, J.C. Xiong, L.H. He, and Z.W. Zhao, Electrochemical system with LiMn2O4 porous electrode for lithium recovery and its kinetics, Sep. Purif. Technol., 270(2021), art. No. 118809. doi: 10.1016/j.seppur.2021.118809
|
[111] |
Z.Y. Guo, Z.Y. Ji, J. Wang, X.F. Guo, and J.S. Liang, Electrochemical lithium extraction based on “rocking-chair” electrode system with high energy-efficient: The driving mode of constant current-constant voltage, Desalination, 533(2022), art. No. 115767. doi: 10.1016/j.desal.2022.115767
|
[112] |
G.L. Luo, L. Zhu, X.W. Li, et al., Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode, J. Energy Chem., 69(2022), p. 244. doi: 10.1016/j.jechem.2022.01.012
|
[113] |
J.S. Yuan, H.B. Yin, Z.Y. Ji, and H.N. Deng, Effective recycling performance of Li+ extraction from spinel-type LiMn2O4 with persulfate, Ind. Eng. Chem. Res., 53(2014), No. 23, p. 9889. doi: 10.1021/ie501098e
|
[114] |
R. Pulido, N. Naveas, R. J Martín-Palma, et al., Experimental and density functional theory study of the Li+ desorption in spinel/layered lithium manganese oxide nanocomposites using HCl, Chem. Eng. J., 441(2022), art. No. 136019. doi: 10.1016/j.cej.2022.136019
|
[115] |
J.L. Xiao, X.Y. Nie, S.Y. Sun, X.F. Song, P. Li, and J.G. Yu, Lithium ion adsorption-desorption properties on spinel Li4Mn5O12 and pH-dependent ion-exchange model, Adv. Powder Technol., 26(2015), No. 2, p. 589. doi: 10.1016/j.apt.2015.01.008
|
[116] |
H.Y. Lin, X.P. Yu, M.L. Li, J. Duo, Y.F. Guo, and T.L. Deng, Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water, ACS Appl. Mater. Interfaces, 11(2019), No. 29, p. 26364. doi: 10.1021/acsami.9b07401
|
[117] |
M.X. Liu, D. Wu, D.L. Qin, and G. Yang, Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance, Chin. J. Chem. Eng., 45(2022), p. 258. doi: 10.1016/j.cjche.2021.07.003
|
[118] |
S.D. Wei, Y.F. Wei, T. Chen, C.B. Liu, and Y.H. Tang, Porous lithium ion sieves nanofibers: General synthesis strategy and highly selective recovery of lithium from brine water, Chem. Eng. J., 379(2020), art. No. 122407. doi: 10.1016/j.cej.2019.122407
|
[119] |
X.W. Li, L.L. Chen, Y.H. Chao, et al., Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene, Desalination, 537(2022), art. No. 115847. doi: 10.1016/j.desal.2022.115847
|
[120] |
T. Ryu, J. Shin, S.M. Ghoreishian, K.S. Chung, and Y.S. Huh, Recovery of lithium in seawater using a titanium intercalated lithium manganese oxide composite, Hydrometallurgy, 184(2019), p. 22. doi: 10.1016/j.hydromet.2018.12.012
|
[121] |
M.P. Paranthaman, L. Li, J.Q. Luo, et al., Recovery of lithium from geothermal brine with lithium–aluminum layered double hydroxide chloride sorbents, Environ. Sci. Technol., 51(2017), No. 22, p. 13481. doi: 10.1021/acs.est.7b03464
|
[122] |
T.M. Yu, A. Caroline Reis Meira, J. Cristina Kreutz, et al., Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum: An alternative material for sorption and catalytic purposes, Appl. Surf. Sci., 467-468(2019), p. 1195. doi: 10.1016/j.apsusc.2018.10.221
|
[123] |
S.S. Xu, J.F. Song, Q.Y. Bi, et al., Extraction of lithium from Chinese salt-lake brines by membranes: Design and practice, J. Membr. Sci., 635(2021), art. No. 119441. doi: 10.1016/j.memsci.2021.119441
|
[124] |
X.Y. Nie, S.Y. Sun, Z. Sun, X.F. Song, and J.G. Yu, Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes, Desalination, 403(2017), p. 128. doi: 10.1016/j.desal.2016.05.010
|
[125] |
Z.Y. Guo, Z.Y. Ji, Q.B. Chen, et al., Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes, J. Clean. Prod., 193(2018), p. 338. doi: 10.1016/j.jclepro.2018.05.077
|
[126] |
G. Liu, Z.W. Zhao, and L.H. He, Highly selective lithium recovery from high Mg/Li ratio brines, Desalination, 474(2020), art. No. 114185. doi: 10.1016/j.desal.2019.114185
|
[127] |
W.H. Shi, X.Y. Liu, C.Z. Ye, X.H. Cao, C.J. Gao, and J.N. Shen, Efficient lithium extraction by membrane capacitive deionization incorporated with monovalent selective cation exchange membrane, Sep. Purif. Technol., 210(2019), p. 885. doi: 10.1016/j.seppur.2018.09.006
|
[128] |
J. Hou, H.C. Zhang, A.W. Thornton, A.J. Hill, H.T. Wang, and K. Konstas, Lithium extraction by emerging metal–organic framework-based membranes, Adv. Funct. Mater., 31(2021), No. 46, art. No. 2105991. doi: 10.1002/adfm.202105991
|
[129] |
J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
|
[130] |
L.M. Ji, Y.H. Hu, L.J. Li, et al., Lithium extraction with a synergistic system of dioctyl phthalate and tributyl phosphate in kerosene and FeCl3, Hydrometallurgy, 162(2016), p. 71. doi: 10.1016/j.hydromet.2016.02.018
|
[131] |
Q. Sun, H. Chen, and J.G. Yu, Investigation on the lithium extraction process with the TBP–FeCl3 solvent system using experimental and DFT methods, Ind. Eng. Chem. Res., 61(2022), No. 13, p. 4672. doi: 10.1021/acs.iecr.1c05072
|
[132] |
X.P. Yu, X.B. Fan, Y.F. Guo, and T.L. Deng, Recovery of lithium from underground brine by multistage centrifugal extraction using tri-isobutyl phosphate, Sep. Purif. Technol., 211(2019), p. 790. doi: 10.1016/j.seppur.2018.10.054
|
[133] |
C.Q. Cai, T. Hanada, A.T.N. Fajar, and M. Goto, An ionic liquid extractant dissolved in an ionic liquid diluent for selective extraction of Li(I) from salt lakes, Desalination, 509(2021), art. No. 115073. doi: 10.1016/j.desal.2021.115073
|
[134] |
X.H. Liu, M.L. Zhong, X.Y. Chen, J.T. Li, L.H. He, and Z.W. Zhao, Enriching lithium and separating lithium to magnesium from sulfate type salt lake brine, Hydrometallurgy, 192(2020), art. No. 105247. doi: 10.1016/j.hydromet.2020.105247
|
[135] |
D.F. Liu, Z. Li, L.H. He, and Z.W. Zhao, Facet engineered Li3PO4 for lithium recovery from brines, Desalination, 514(2021), art. No. 115186. doi: 10.1016/j.desal.2021.115186
|