留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(14)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  857
  • HTML全文浏览量:  365
  • PDF下载量:  70
  • 被引次数: 0
Boqiang Cui, Guorui Feng, Jinwen Bai, Gaili Xue, Kai Wang, Xudong Shi, Shanyong Wang, Zehua Wang, and Jun Guo, Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1524-1537. https://doi.org/10.1007/s12613-022-2545-x
Cite this article as:
Boqiang Cui, Guorui Feng, Jinwen Bai, Gaili Xue, Kai Wang, Xudong Shi, Shanyong Wang, Zehua Wang, and Jun Guo, Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1524-1537. https://doi.org/10.1007/s12613-022-2545-x
引用本文 PDF XML SpringerLink
研究论文

柱旁双侧充填复合承载结构的破坏特征及损伤演化


  • 通讯作者:

    冯国瑞    E-mail: fguorui@163.com

    白锦文    E-mail: baijinwen629@sina.com

文章亮点

  • (1) 利用数字图像相关技术(DSCM)研究了“充填体-煤柱-充填体”协同承载结构(BPB煤充结构体)的破坏及变形特征。
  • (2) 基于峰值应力的能量耗散特征,建立了BPB煤充结构体的损伤模型,得到了其损伤演化方程。
  • (3) 探讨了充填体对煤柱的失稳防控机理。
  • 柱旁双侧充填所形成的“充填体-煤柱-充填体”协同承载结构(BPB煤充结构体)在承担覆岩载荷、保障煤矿安全开采方面发挥着重要的作用,其破坏特征及损伤演化值得进一步探索。本文开展了六组不同类型的BPB煤充结构体单轴压缩试验,结合数字图像相关技术(DSCM)监测了试样表面的变形特征,建立了基于峰值应力时能量耗散特征的BPB煤充结构体损伤模型,并探讨了充填体对煤柱的失稳防控机理。研究结果表明:BPB煤充结构体的应变集中带和宏观裂纹首先出现在煤–充界面处,然后在充填体元件中扩展,最终出现在煤体元件上。BPB煤充结构体的弹性应变能在加载初期逐渐累积,峰值应力处达到最大值,在峰后阶段迅速释放;耗散能在加载初期累积较少,加载后期迅速增加。基于峰值应力时能量耗散特征所建立的BPB煤充结构体损伤模型与试验结果吻合良好,可为BPB煤充结构体的失稳防控提供依据。结合BPB煤充结构体破坏形态可知,充填体具有抑制煤柱变形的作用,随着充填体元件体积占比的减小,其对煤柱的约束作用逐渐减弱,BPB煤充结构体更容易失稳,破坏也更加严重。
  • Research Article

    Failure characteristics and the damage evolution of a composite bearing structure in pillar-side cemented paste backfilling

    + Author Affiliations
    • A backfilling body-coal pillar-backfilling body (BPB) structure formed by pillar-side cemented paste backfilling can bear overburden stress and ensure safe mining. However, the failure response of BPB composite samples must be investigated. This paper examines the deformation characteristics and damage evolution of six types of BPB composite samples using a digital speckle correlation method under uniaxial compression conditions. A new damage evolution equation was established on the basis of the input strain energy and dissipated strain energy at the peak stress. The prevention and control mechanisms of the backfilling body on the coal pillar instability were discussed. The results show that the deformation localization and macroscopic cracks of the BPB composite samples first appeared at the coal–backfilling interface, and then expanded to the backfilling elements, ultimately appearing in the coal elements. The elastic strain energy in the BPB composite samples reached a maximum at the peak stress, whereas the dissipated energy continued to accumulate and increase. The damage evolution curve and equation agree well with the test results, providing further understanding of instability prevention and the control mechanisms of the BPB composite samples. The restraining effect on the coal pillar was gradually reduced with decreasing backfilling body element’s volume ratio, and the BPB composite structure became more vulnerable to failure. This research is expected to guide the design, stability monitoring, instability prevention, and control of BPB structures in pillar-side cemented paste backfilling mining.
    • loading
    • [1]
      G.R. Feng, Y.J. Zhang, T.Y. Qi, and L.X. Kang, Status and research progress for residual coal mining in China, J. China Coal Soc., 45(2020), No. 1, p. 151.
      [2]
      M. Ahmad, N.A. Al-Shayea, X.W. Tang, A. Jamal, H.M. Al-Ahmadi, and F. Ahmad, Predicting the pillar stability of underground mines with random trees and C4.5 decision trees, Appl. Sci., 10(2020), No. 18, art. No. 6486. doi: 10.3390/app10186486
      [3]
      H.L. Gu, M. Tao, X.B. Li, Q.Y. Li, W.Z. Cao, and F. Wang, Dynamic response and failure mechanism of fractured coal under different soaking times, Theor. Appl. Fract. Mech., 98(2018), p. 112. doi: 10.1016/j.tafmec.2018.09.001
      [4]
      R. Kumar, A.J. Das, P.K. Mandal, R. Bhattacharjee, and S. Tewari, Probabilistic stability analysis of failed and stable cases of coal pillars, Int. J. Rock Mech. Min. Sci., 144(2021), art. No. 104810. doi: 10.1016/j.ijrmms.2021.104810
      [5]
      A.J. Das, P.S. Paul, P.K. Mandal, R. Kumar, and S. Tewari, Investigation of failure mechanism of inclined coal pillars: Numerical modelling and tensorial statistical analysis with field validations, Rock Mech. Rock Eng., 54(2021), No. 6, p. 3263. doi: 10.1007/s00603-021-02456-5
      [6]
      M.R. Leake, W.J. Conrad, E.C. Westman, S.G. Afrouz, and R.J. Molka, Microseismic monitoring and analysis of induced seismicity source mechanisms in a retreating room and pillar coal mine in the Eastern United States, Undergr. Space, 2(2017), No. 2, p. 115. doi: 10.1016/j.undsp.2017.05.002
      [7]
      Z.Z. Cao, P. Xu, Z.H. Li, M.X. Zhang, Y. Zhao, and W.L. Shen, Joint bearing mechanism of coal pillar and backfilling body in roadway backfilling mining technology, CMC-Comput. Mater. Continua, 54(2018), No. 2, p. 137.
      [8]
      J.W. Bai, B.Q. Cui, T.Y. Qi, et al., Fundamental theory for rock strata control of key pillar-side backfilling, J. China Coal Soc., 46(2021), No. 2, p. 424.
      [9]
      G.R. Feng, J.W. Bai, X.D. Shi, et al., Key pillar theory in the chain failure of residual coal pillars and its application prospect, J. China Coal Soc., 46(2021), No. 1, p. 164.
      [10]
      F.T. Wang, Q. Ma, G. Li, C.G. Wu, and G.L. Guo, Overlying strata movement laws induced by longwall mining of deep buried coal seam with superhigh-water material backfilling technology, Adv. Civ. Eng., 2018(2018), art. No. 4306239.
      [11]
      S. Cao, E. Yilmaz, Z.Y. Yin, G.L. Xue, W.D. Song, and L.J. Sun, CT scanning of internal crack mechanism and strength behavior of cement-fiber-tailings matrix composites, Cem. Concr. Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
      [12]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [13]
      S. Sinha and G. Walton, Modeling behaviors of a coal pillar rib using the progressive S-shaped yield criterion, J. Rock Mech. Geotech. Eng., 12(2020), No. 3, p. 484. doi: 10.1016/j.jrmge.2019.12.002
      [14]
      Y.Q. Ren, G.R. Feng, P.F. Wang, et al., Vertical stress and deformation characteristics of roadside backfilling body in gob-side entry for thick coal seams with different pre-split angles, Energies, 12(2019), No. 7, art. No. 1316. doi: 10.3390/en12071316
      [15]
      C.C. Qi, A. Fourie, and Q.S. Chen, Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill, Constr. Build. Mater., 159(2018), p. 473. doi: 10.1016/j.conbuildmat.2017.11.006
      [16]
      X. Zhao, A. Fourie, R. Veenstra, and C.C. Qi, Safety of barricades in cemented paste-backfilled stopes, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1054. doi: 10.1007/s12613-020-2006-3
      [17]
      D.R. Tesarik, J.B. Seymour, and T.R. Yanske, Post-failure behavior of two mine pillars confined with backfill, Int. J. Rock Mech. Min. Sci., 40(2003), No. 2, p. 221. doi: 10.1016/S1365-1609(02)00139-9
      [18]
      H.F. Liu, Q. Sun, N. Zhou, and Z.Y. Wu, Risk assessment and control strategy of residual coal pillar in room mining: Case study in ecologically fragile mining areas, China, Sustainability, 13(2021), No. 5, art. No. 2712. doi: 10.3390/su13052712
      [19]
      N. Zhou, H. Yan, S.Y. Jiang, Q. Sun, and S.Y. Ouyang, Stability analysis of surrounding rock in paste backfill recovery of residual room pillars, Sustainability, 11(2019), No. 2, art. No. 478. doi: 10.3390/su11020478
      [20]
      S. Mo, I. Canbulat, C. Zhang, J. Oh, B. Shen, and P. Hagan, Numerical investigation into the effect of backfilling on coal pillar strength in highwall mining, Int. J. Min. Sci. Technol., 28(2018), No. 2, p. 281. doi: 10.1016/j.ijmst.2017.07.003
      [21]
      V. Sarfarazi, H. Haeri, A.B. Shemirani, and Z. Zhu, Shear behavior of non-persistent joint under high normal load, Strength Mater., 49(2017), No. 2, p. 320. doi: 10.1007/s11223-017-9872-6
      [22]
      H. Haeri, V. Sarfarazi, M. Yazdani, A.B. Shemirani, and A. Hedayat, Experimental and numerical investigation of the center-cracked horseshoe disk method for determining the mode I fracture toughness of rock-like material, Rock Mech. Rock Eng., 51(2018), No. 1, p. 173. doi: 10.1007/s00603-017-1310-3
      [23]
      H. Haeri, V. Sarfarazi, and Z.M. Zhu, Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC), Comput. Concr., 19(2017), No. 1, p. 99. doi: 10.12989/cac.2017.19.1.099
      [24]
      H. Haeri, Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions, Strength Mater., 47(2015), No. 4, p. 618. doi: 10.1007/s11223-015-9698-z
      [25]
      M.A. Sutton, J.J. Orteu, and H. Schreier, Image Correlation for Shape, Motion and Deformation Measurements, Springer, New York, 2009.
      [26]
      M. Sharafisafa, Z. Aliabadian, and L.M. Shen, Crack initiation and failure of block-in-matrix rocks under Brazilian test using digital image correlation, Theor. Appl. Fract. Mech., 109(2020), art. No. 102743. doi: 10.1016/j.tafmec.2020.102743
      [27]
      Q. Sun, C. Cai, S.K. Zhang, et al., Study of localized deformation in geopolymer cemented coal gangue-fly ash backfill based on the digital speckle correlation method, Constr. Build. Mater., 215(2019), p. 321. doi: 10.1016/j.conbuildmat.2019.04.208
      [28]
      H. Munoz, A. Taheri, and E.K. Chanda, Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation, Rock Mech. Rock Eng., 49(2016), No. 7, p. 2541. doi: 10.1007/s00603-016-0935-y
      [29]
      X.J. Du, G.R. Feng, T.Y. Qi, Y.X. Guo, Y.J. Zhang, and Z.H. Wang, Failure characteristics of large unconfined cemented gangue backfill structure in partial backfill mining, Constr. Build. Mater., 194(2019), p. 257. doi: 10.1016/j.conbuildmat.2018.11.038
      [30]
      Q.Q. Zhu, C.D. Ma, X.B. Li, and D.Y. Li, Effect of filling on failure characteristics of diorite with double rectangular holes under coupled static-dynamic loads, Rock Mech. Rock Eng., 54(2021), No. 6, p. 2741. doi: 10.1007/s00603-021-02409-y
      [31]
      Y.K. Xing, B.X. Huang, E.Q. Ning, L. Zhao, and F. Jin, Quasi-static loading rate effects on fracture process zone development of mixed-mode (I–II) fractures in rock-like materials, Eng. Fract. Mech., 240(2020), art. No. 107365. doi: 10.1016/j.engfracmech.2020.107365
      [32]
      C. Zhao, F.M. Liu, J.S. Tian, H. Matsuda, and C. Morita, Study on single crack propagation and damage evolution mechanism of rock-like materials under uniaxial compression, Chin. J. Rock Mech. Eng., 35(2016), Suppl. 2, p. 3626.
      [33]
      J. Fan, X. Zhu, J.W. Hu, Y. Tang, and C.L. He, Research on three-dimensional digital image correlation technology in sandstone crack propagation and damage monitoring, Rock Soil Mech., 43(2022), No. 4, p. 1.
      [34]
      F.Q. Gao and L. Yang, Experimental and numerical investigation on the role of energy transition in strainbursts, Rock Mech. Rock Eng., 54(2021), No. 9, p. 5057. doi: 10.1007/s00603-021-02550-8
      [35]
      H.C. Xu, X.P. Lai, P.F. Shan, et al., Energy dissimilation characteristics and shock mechanism of coal-rock mass induced in steeply-inclined mining: Comparison based on physical simulation and numerical calculation, Acta Geotech., 2022. http://doi.org/10.1007/s11440-022-01617-2
      [36]
      Q. Ma, Y.L. Tan, X.S. Liu, Q.H. Gu, and X.B. Li, Effect of coal thicknesses on energy evolution characteristics of roof rock-coal-floor rock sandwich composite structure and its damage constitutive model, Composites Part B, 198(2020), art. No. 108086. doi: 10.1016/j.compositesb.2020.108086
      [37]
      X.F. Yu and T.Y. Liu, The filling mechanism and mining theory in Jinchuan, [in] Rock Mechanics and Engineering for the 21st Century: Anthology of the Fourth Academic Conference of Chinese Society of Rock Mechanics and Engineering, Science and Technology of China Press, Beijing, 1996.
      [38]
      K. Du, D.Y. Li, and J.F. Jin, Matching analysis of energy and strength between backfill and rock mass and its application, China Saf. Sci. J., 21(2011), No. 12, p. 82.
      [39]
      S. Li, R. Zhang, R. Feng, B.Y. Hu, G.J. Wang, and H.X. Yu, Feasibility of recycling bayer process red mud for the safety backfill mining of layered soft bauxite under coal seams, Minerals, 11(2021), No. 7, art. No. 722. doi: 10.3390/min11070722
      [40]
      P. Huang, A.J.S. (Sam) Spearing, J. Feng, K.V. Jessu, and S. Guo, Effects of solid backfilling on overburden strata movement in shallow depth longwall coal mines in West China, J. Geophys. Eng., 15(2018), No. 5, p. 2194. doi: 10.1088/1742-2140/aac62c
      [41]
      L.D. Zhao, Numerical investigation on the mechanical behaviour of combined backfill-rock structure with KCC model, Constr. Build. Mater., 283(2021), art. No. 122782. doi: 10.1016/j.conbuildmat.2021.122782
      [42]
      Y. Xue, Z.Z. Cao, and Z.H. Li, Destabilization mechanism and energy evolution of coal pillar in rockburst disaster, Arab. J. Geosci., 13(2020), No. 13, art. No. 557. doi: 10.1007/s12517-020-05584-4
      [43]
      J.X. Zhang, P. Huang, Q. Zhang, M. Li, and Z.W. Chen, Stability and control of room mining coal pillars—Taking room mining coal pillars of solid backfill recovery as an example, J. Cent. South Univ., 24(2017), No. 5, p. 1121. doi: 10.1007/s11771-017-3515-8
      [44]
      B.Q. Cui, G.R. Feng, J.W. Bai, K. Wang, X.D. Shi, and H.T. Wu, Acoustic emission characteristics and damage evolution process of backfilling body-coal pillar-backfilling body composite structure, Bull. Eng. Geol. Environ., 81(2022), No. 8, art. No. 300. doi: 10.1007/s10064-022-02779-9
      [45]
      Y.Q. Hou, S.H. Yin, X. Chen, M.Z. Zhang, and S.X. Yang, Study on characteristic stress and energy damage evolution mechanism of cemented tailings backfill under uniaxial compression, Constr. Build. Mater., 301(2021), art. No. 124333. doi: 10.1016/j.conbuildmat.2021.124333
      [46]
      H.P. Xie, R.D. Peng, Y. Ju, and H.W. Zhou, On energy analysis of rock failure, China J. Rock Mech. Eng., 24(2005), No. 15, p. 2603.
      [47]
      C.Y. Liang, X. Li, S.X. Wang, S.D. Li, J.M. He, and C.F. Ma, Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression, Chin. J. Rock Mech. Eng., 31(2012), No. 9, p. 1830.
      [48]
      H.P. Xie, Y. Ju, and L.Y. Li, Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles, Chin. J. Rock Mech. Eng., 24(2005), No. 17, p. 3003.
      [49]
      H.P. Xie, Y. Ju, L.Y. Li, and R.D. Peng, Energy mechanism of deformation and failure of rock masses, Chin. J. Rock Mech. Eng., 27(2008), No. 9, p. 1729.
      [50]
      I. Sevostianov, V. Verijenko, and M. Kachanov, Cross-property correlations for short fiber reinforced composites with damage and their experimental verification, Composites Part B, 33(2002), No. 3, p. 205. doi: 10.1016/S1359-8368(02)00008-2
      [51]
      B.X. Liu, J.L. Huang, Z.Y. Wang, and L. Liu, Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression, Chin. J. Rock Mech. Eng., 28(2009), Suppl. 1, p. 3234.
      [52]
      C. Barile, C. Casavola, G. Pappalettera, and P.K. Vimalathithan, Damage characterization in composite materials using acoustic emission signal-based and parameter-based data, Composites Part B, 178(2019), art. No. 107469. doi: 10.1016/j.compositesb.2019.107469
      [53]
      D.P. Ma, Y. Zhou, C.X. Liu, and Y.D. Shang, Energy evolution characteristics of coal failure in triaxial tests under different unloading confining pressure rates, Rock Soil Mech., 40(2019), No. 7, p. 2645.
      [54]
      H.F. Ma, Y.Q. Song, S.J. Chen, et al., Experimental investigation on the mechanical behavior and damage evolution mechanism of water-immersed gypsum rock, Rock Mech. Rock Eng., 54(2021), No. 9, p. 4929. doi: 10.1007/s00603-021-02548-2
      [55]
      X.Z. Peng, X.M. Cui, C.Y. Li, J.J. Pei, X.L. Kang, and K.L. Liang, Design and practice of room & pillar water-preserved mining for shallowly buried coal seam in North of Shaanxi Province, J. Min. Saf. Eng., 25(2008), No. 3, p. 301.
      [56]
      Z.T. Wang, H.Q. Zhou, and Y.S. Xie, Mine Rock Mechanics, China University of Mining and Technology Press, Xuzhou, 2007.
      [57]
      M.F. Cai, Key theories and technologies for surrounding rock stability and ground control in deep mining, J. Min. Strata Control Eng., 2(2020), No. 3, art. No. 033037.
      [58]
      K. Huang, T. Shimada, N. Ozaki, et al., A unified and universal Griffith-based criterion for brittle fracture, Int. J. Solids Struct., 128(2017), p. 67. doi: 10.1016/j.ijsolstr.2017.08.018
      [59]
      S.T. Ji, Z. Wang, and J. Karlovšek, Analytical study of subcritical crack growth under mode I loading to estimate the roof durability in underground excavation, Int. J. Min. Sci. Technol., 32(2022), No. 2, p. 375. doi: 10.1016/j.ijmst.2021.08.006
      [60]
      C.W. Zhang, Z.X. Jin, G.R. Feng, X.M. Song, R. Gao, and Y.J. Zhang, Double peaked stress–strain behavior and progressive failure mechanism of encased coal pillars under uniaxial compression, Rock Mech. Rock Eng., 53(2020), No. 7, p. 3253. doi: 10.1007/s00603-020-02101-7

    Catalog


    • /

      返回文章
      返回