留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(15)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  773
  • HTML全文浏览量:  289
  • PDF下载量:  64
  • 被引次数: 0
Wanlin Wang, Lankun Wang, and Peisheng Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 354-364. https://doi.org/10.1007/s12613-022-2548-7
Cite this article as:
Wanlin Wang, Lankun Wang, and Peisheng Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 354-364. https://doi.org/10.1007/s12613-022-2548-7
引用本文 PDF XML SpringerLink
研究论文

亚快速凝固高强度微合金钢再加热和冷却过程中的奥氏体生长和贝氏体转变动力学研究

  • 通讯作者:

    吕培生    E-mail: Lyu.peisheng@csu.edu.cn

文章亮点

  • (1) 研究了亚快速凝固微合金钢再加热过程中析出相对奥氏体长大的影响。
  • (2) 建立了基于亚快速凝固微合金钢的奥氏体等温长大动力学模型。
  • (3) 探究了亚快速凝固微合金钢在冷却过程中贝氏体板条生长动力学。
  • 首先,采用薄带连铸热模拟技术制备了具有亚快速凝固特征的高强微合金钢样品。然后利用共聚焦激光扫描显微镜(CLSM)原位观察了样品在再加热和冷却过程中奥氏体晶粒等温长大过程和后续的贝氏体转变过程。结果表明,亚快速凝固微合金钢中的奥氏体长大过程与再加热温度关系紧密;在高温区(1000℃以上)和低温区(1000℃以下),奥氏体晶粒生长活化能分别为538.0 kJ/mol和693.2 kJ/mol。并据此建立了基于亚快速凝固微合金钢的奥氏体等温长大动力学模型,经过验证,该模型能很好地预测奥氏体晶粒在保温过程的尺寸变化规律。研究还发现,在较低温度下保温时生成的细小且弥散的析出相能够有效地阻碍奥氏体晶粒生长。此外,还原位观察了不同保温温度下(保温时间1800s)的亚快速凝固微合金钢在冷却过程中的贝氏体相变行为。研究了不同形核位置和不同原奥晶粒尺寸对贝氏体板条生长的影响。结果表明,贝氏体板条的生长速率不仅与成核位置有关,而且与原奥尺寸密切相关。
  • Research Article

    Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification

    + Author Affiliations
    • First, strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique. Next, the isothermal growth of austenite grain during the reheating treatment of strip casts was observed in situ through confocal laser scanning microscope (CLSM). The results indicated that the time exponent of grains growth suddenly rise when the isothermal temperature higher than 1000°C. And the activation energy for austenite grain growth were calculated to be 538.0 kJ/mol in the high temperature region (above 1000°C) and 693.2 kJ/mol in the low temperature region (below 1000°C), respectively. Then, the kinetics model of austenite isothermal growth was established, which can predict the austenite grain size during isothermal hold very well. Besides, high density of second phase particles with small size was found during the isothermal hold at the low temperature region, leading to the refinement of austenite grain. After isothermal hold at different temperature for 1800 s, the bainite transformation in microalloyed steel strip was also observed in situ during the continuous cooling process. And growth rates of bainite plates with different nucleation positions and different prior austenite grain size (PAGS) were calculated. It was indicated that the growth rate of the bainite plate is not only related to the nucleation position but also to the PAGS.
    • loading
    • [1]
      X.D. Huo, J.N. Xia, L.J. Li, Z.W. Peng, S.J. Chen, and C.T. Peng, A review of research and development on titanium microalloyed high strength steels, Mater. Res. Express, 5(2018), No. 6, art. No. 062002. doi: 10.1088/2053-1591/aacb61
      [2]
      T.N. Baker, Microalloyed steels, Ironmaking Steelmaking, 43(2016), No. 4, p. 264. doi: 10.1179/1743281215Y.0000000063
      [3]
      A. Zaitsev and N. Arutyunyan, Low-carbon Ti–Mo microalloyed hot rolled steels: Special features of the formation of the structural state and mechanical properties, Metals, 11(2021), No. 10, art. No. 1584. doi: 10.3390/met11101584
      [4]
      Y. Liu, Y.H. Sun, and H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011. doi: 10.1007/s12613-020-2092-2
      [5]
      Y.N. Zhao, Z.Q. Ma, L.M. Yu, J. Dong, and Y.C. Liu, The simultaneous improvements of strength and ductility in additive manufactured Ni-based superalloy via controlling cellular subgrain microstructure, J. Mater. Sci. Technol., 68(2021), p. 184. doi: 10.1016/j.jmst.2020.07.011
      [6]
      L. Yang, Y. Li, Z.L. Xue, and C.G. Cheng, Effect of different thermal schedules on ductility of microalloyed steel slabs during continuous casting, Metals, 9(2019), No. 1, art. No. 37. doi: 10.3390/met9010037
      [7]
      S.K. Giri, T. Chanda, S. Chatterjee, and A. Kumar, Hot ductility of C–Mn and microalloyed steels evaluated for thin slab continuous casting process, Mater. Sci. Technol., 30(2014), No. 3, p. 268. doi: 10.1179/1743284713Y.0000000348
      [8]
      J. Zhou, Y.L. Kang, and X.P. Mao, Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production, J. Univ. Sci. Technol. Beijing, 15(2008), No. 4, p. 389. doi: 10.1016/S1005-8850(08)60074-2
      [9]
      N. Zapuskalov, Comparison of continuous strip casting with conventional technology, ISIJ Int., 43(2003), No. 8, p. 1115. doi: 10.2355/isijinternational.43.1115
      [10]
      S. Ge, M. Isac, and R.I.L. Guthrie, Progress of strip casting technology for steel; historical developments, ISIJ Int., 52(2012), No. 12, p. 2109. doi: 10.2355/isijinternational.52.2109
      [11]
      S. Ge, M. Isac, and R.I.L. Guthrie, Progress in strip casting technologies for steel; technical developments, ISIJ Int., 53(2013), No. 5, p. 729. doi: 10.2355/isijinternational.53.729
      [12]
      A. Maleki, A. Taherizadeh, and N. Hosseini, Twin roll casting of steels: An overview, ISIJ Int., 57(2017), No. 1, p. 1. doi: 10.2355/isijinternational.ISIJINT-2016-502
      [13]
      J.Y. Heo, M.S. Baek, K.J. Euh, and K.A. Lee, Microstructure, tensile and fatigue properties of Al–5wt.%Mg alloy manufactured by twin roll strip casting, Met. Mater. Int., 24(2018), No. 5, p. 992. doi: 10.1007/s12540-018-0123-6
      [14]
      Y. Kwon, J.H. Hwang, H.C. Choi, et al., Microstructure and tensile properties of ferritic lightweight steel produced by twin-roll casting, Met. Mater. Int., 26(2020), No. 1, p. 75. doi: 10.1007/s12540-019-00314-2
      [15]
      R. Wechsler, The status of twin-roll casting technology, Scand. J. Metall., 32(2003), No. 1, p. 58. doi: 10.1034/j.1600-0692.2003.00636.x
      [16]
      M. Ferry, Direct Strip Casting of Metals and Alloys, Woodhead Publishing, Cambridge, 2006.
      [17]
      Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation, Mater. Sci. Eng. A, 651(2016), p. 291. doi: 10.1016/j.msea.2015.10.120
      [18]
      Z.P. Xiong, A.G. Kostryzhev, N.E. Stanford, and E.V. Pereloma, Microstructures and mechanical properties of dual phase steel produced by laboratory simulated strip casting, Mater. Des., 88(2015), p. 537. doi: 10.1016/j.matdes.2015.09.031
      [19]
      Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma, Microstructures and mechanical properties of TRIP steel produced by strip casting simulated in the laboratory, Mater. Sci. Eng. A, 664(2016), p. 26. doi: 10.1016/j.msea.2016.03.106
      [20]
      Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma, Microstructure and mechanical properties of strip cast TRIP steel subjected to thermo-mechanical simulation, Mater. Sci. Eng. A, 677(2016), p. 356. doi: 10.1016/j.msea.2016.09.055
      [21]
      M.J. Ha, W.S. Kim, H.K. Moon, B.J. Lee, and S. Lee, Analysis and prevention of dent defects formed during strip casting of twin-induced plasticity steels, Metall. Mater. Trans. A, 39(2008), No. 5, p. 1087. doi: 10.1007/s11661-008-9496-3
      [22]
      M. Daamen, W. Nessen, P.T. Pinard, S. Richter, A. Schwedt, and G. Hirt, Deformation behavior of high-manganese TWIP steels produced by twin-roll strip casting, Procedia Eng., 81(2014), p. 1535. doi: 10.1016/j.proeng.2014.10.186
      [23]
      S.L. Shrestha, K.Y. Xie, C. Zhu, et al., Cluster strengthening of Nb-microalloyed ultra-thin cast strip steels produced by the CASTRIP® process, Mater. Sci. Eng. A, 568(2013), p. 88. doi: 10.1016/j.msea.2013.01.021
      [24]
      K.Y. Xie, T.X. Zheng, J.M. Cairney, et al., Strengthening from Nb-rich clusters in a Nb-microalloyed steel, Scripta. Mater., 66(2012), No. 9, p. 710. doi: 10.1016/j.scriptamat.2012.01.029
      [25]
      L. Xu, J. Shi, W.Q. Cao, M.Q. Wang, W.J. Hui, and H. Dong, Improved mechanical properties in Ti-bearing martensitic steel by precipitation and grain refinement, J. Mater. Sci., 46(2011), No. 19, p. 6384. doi: 10.1007/s10853-011-5586-5
      [26]
      L. Xu, J. Shi, W.Q. Cao, M.Q. Wang, W.J. Hui, and H. Dong, Yield strength enhancement of martensitic steel through titanium addition, J. Mater. Sci., 46(2011), No. 10, p. 3653. doi: 10.1007/s10853-011-5282-5
      [27]
      Y. Han, J. Shi, L. Xu, W.Q. Cao, and H. Dong, Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel, Mater. Sci. Eng. A, 553(2012), p. 192. doi: 10.1016/j.msea.2012.06.015
      [28]
      M.A. Hafeez, A. Farooq, K.B. Tayyab, and M.A. Arshad, Effect of thermomechanical cyclic quenching and tempering treatments on microstructure, mechanical and electrochemical properties of AISI 1345 steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 688. doi: 10.1007/s12613-020-2139-4
      [29]
      G.W. Yang, X.J. Sun, Z.D. Li, X.X. Li, and Q.L. Yong, Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel, Mater. Des., 50(2013), p. 102. doi: 10.1016/j.matdes.2013.03.019
      [30]
      G.W. Yang, Z.D. Li, X.J. Sun, X. Yong, and Q.L. Yong, Ultrafine grained austenite in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 20(2013), No. 4, p. 64. doi: 10.1016/S1006-706X(13)60084-9
      [31]
      P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore, Grain growth predictions in microalloyed steels, ISIJ Int., 36(1996), No. 2, p. 194. doi: 10.2355/isijinternational.36.194
      [32]
      J. Moon, J. Lee, and C. Lee, Prediction for the austenite grain size in the presence of growing particles in the weld HAZ of Ti-microalloyed steel, Mater. Sci. Eng. A, 459(2007), No. 1-2, p. 40. doi: 10.1016/j.msea.2006.12.073
      [33]
      G.W. Yang, X.J. Sun, Q.L. Yong, Z.D. Li, and X.X. Li, Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel, J. Iron Steel Res. Int., 21(2014), No. 8, p. 757. doi: 10.1016/S1006-706X(14)60138-2
      [34]
      Y. Shen, B. Chen, and C. Wang, In situ observation and growth kinetics of bainite laths in the coarse-grained heat-affected zone of 2.25Cr–1Mo heat-resistant steel during simulated welding, Metall. Mater. Trans. A, 52(2021), No. 1, p. 14. doi: 10.1007/s11661-020-06061-z
      [35]
      Z.W. Hu, G. Xu, H.J. Hu, L. Wang, and Z.L. Xue, In situ measured growth rates of bainite plates in an Fe–C–Mn–Si superbainitic steel, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 371. doi: 10.1007/s12613-014-0918-5
      [36]
      P.S. Lyu, W.L. Wang, H.R. Qian, J.C. Wu, and Y. Fang, Formation of naturally deposited film and its effect on interfacial heat transfer during strip casting of martensitic steel, JOM, 72(2020), No. 5, p. 1910. doi: 10.1007/s11837-020-04049-z
      [37]
      P.S. Lyu, W.L. Wang, C.H. Wang, L.J. Zhou, Y. Fang, and J.C. Wu, Effect of sub-rapid solidification and secondary cooling on microstructure and properties of strip cast low-carbon bainitic–martensitic steel, Metall. Mater. Trans. A, 52(2021), No. 9, p. 3945. doi: 10.1007/s11661-021-06356-9
      [38]
      W.L. Wang, H.R. Qian, D.W. Cai, L.J. Zhou, S. Mao, and P.S. Lyu, Microstructure and magnetic properties of 6.5 wt pct Si steel strip produced by simulated strip casting process, Metall. Mater. Trans. A, 52(2021), No. 5, p. 1799. doi: 10.1007/s11661-021-06191-y
      [39]
      S.J. Yao, L.X. Du, X.H. Liu, G.D. Wang, Isothermal growth kinetics of ultra-fine austenite grains in a Nb–V–Ti microalloyed steel, J. Mater. Sci. Technol., 25(2009), No. 5, p. 615.
      [40]
      H. Hu and B.B. Rath, On the time exponent in isothermal grain growth, Metall. Trans., 1(1970), No. 11, p. 3181. doi: 10.1007/BF03038435
      [41]
      S. Gündüz and R.C. Cochrane, Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel, Mater. Des., 26(2005), No. 6, p. 486.
      [42]
      L.J. Li and R.W. Messler, Dissolution kinetics of NbC particles in the heat-affected zone of type 347 austenitic stainless steel, Metall. Mater. Trans. A, 33(2002), No. 7, p. 2031. doi: 10.1007/s11661-002-0035-3
      [43]
      F.J. Ma, G.H. Wen, P. Tang, G.D. Xu, F. Mei, and W.L. Wang, Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab, Metall. Mater. Trans. B, 42(2011), No. 1, p. 81. doi: 10.1007/s11663-010-9454-5
      [44]
      K.Y. Tsai, M.H. Tsai, and J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater., 61(2013), No. 13, p. 4887. doi: 10.1016/j.actamat.2013.04.058
      [45]
      S. Uhm, J. Moon, C. Lee, J. Yoon, and B. Lee, Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe–C–Mn steels: Considering the effect of initial grain size on isothermal growth behavior, ISIJ Int., 44(2004), No. 7, p. 1230. doi: 10.2355/isijinternational.44.1230
      [46]
      J.Y. Tian, G. Xu, L. Wang, M.X. Zhou, and H.J. Hu, In situ observation of the lengthening rate of bainite sheaves during continuous cooling process in a Fe–C–Mn–Si superbainitic steel, Trans. Indian Inst. Met., 71(2018), No. 1, p. 185. doi: 10.1007/s12666-017-1151-5
      [47]
      L. Fielding, The bainite controversy, Mater. Sci. Technol., 29(2013), p. 383. doi: 10.1179/1743284712Y.0000000157
      [48]
      Z.X. Qiao, Y.C. Liu, L.M. Yu, and Z.M. Gao, Formation mechanism of granular bainite in a 30CrNi3MoV steel, J. Alloys Compd., 475(2009), No. 1-2, p. 560. doi: 10.1016/j.jallcom.2008.07.110
      [49]
      J. Nutter, H. Farahani, W.M. Rainforth, and S. van der Zwaag, Direct TEM observation of α/γ interface migration during cyclic partial phase transformations at intercritical temperatures in an Fe–0.1C −0.5Mn alloy, Acta Mater., 178(2019), p. 68. doi: 10.1016/j.actamat.2019.07.047
      [50]
      Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer, Isothermal austenite–ferrite transformation of Fe–0.04 at.% C alloy: Dilatometric measurement and kinetic analysis, Acta Mater., 56(2008), No. 15, p. 3833. doi: 10.1016/j.actamat.2008.04.015
      [51]
      Y.C. Liu, L.F. Zhang, F. Sommer, and E.J. Mittemeijer, Kinetics of martensite formation in substitutional Fe–Al alloys: Dilatometric analysis, Metall. Mater. Trans. A, 44(2013), No. 3, p. 1430. doi: 10.1007/s11661-012-1497-6
      [52]
      X.D. Li, C.J. Shang, X.P. Ma, et al., Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel, Scripta. Mater., 139(2017), p. 67. doi: 10.1016/j.scriptamat.2017.06.017

    Catalog


    • /

      返回文章
      返回