留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(8)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  509
  • HTML全文浏览量:  171
  • PDF下载量:  36
  • 被引次数: 0
Xiaoying Qian, Hong Yang, Chunfeng Hu, Ying Zeng, Yuanding Huang, Xin Shang, Yangjie Wan, Bin Jiang,  and Qingguo Feng, Effect of potential difference between nano-Al2O3 whisker and Mg matrix on the dispersion of Mg composites, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 104-111. https://doi.org/10.1007/s12613-022-2550-0
Cite this article as:
Xiaoying Qian, Hong Yang, Chunfeng Hu, Ying Zeng, Yuanding Huang, Xin Shang, Yangjie Wan, Bin Jiang,  and Qingguo Feng, Effect of potential difference between nano-Al2O3 whisker and Mg matrix on the dispersion of Mg composites, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 104-111. https://doi.org/10.1007/s12613-022-2550-0
引用本文 PDF XML SpringerLink
研究论文

纳米Al2O3晶须与镁基体间的电势差对镁基复合材料分散性的影响

  • 通讯作者:

    杨鸿    E-mail: hong.yang@cqu.edu.cn

    蒋斌    E-mail: jiangbinrong@cqu.edu.cn

    冯庆国    E-mail: qfeng@swjtu.edu.cn

文章亮点

  • (1) 系统研究了电势差法中溶剂类型和表面修饰剂含量对Al2O3晶须增强镁基复合粉末分散性的影响。
  • (2) 结合第一性原理计算说明了表面修饰剂对Al2O3晶须与镁基间粘结强度的影响。
  • (3) 通过电势差法和粉末冶金成功制备晶粒细化,硬度离散程度低的Al2O3晶须增强镁基复合材料。
  • 镁基复合材料具有较高的强度而受到广泛关注,但增强体的分散性仍是亟需解决的问题之一。本文旨在利用正负离子的电位差来改善纳米Al2O3晶须在Mg基复合材料中的均匀分散性。用十二烷基苯磺酸钠(C18H29NaO3S,SDBS)修饰Mg粉末,并将其表面引入阴极基团。用十六烷基三甲基溴化铵(C19H42BrN,CTAB)对Al2O3晶须进行了改性,在其表面引入阳极基团。研究了CTAB和SDBS的含量、使用氛围和溶剂类型对分散性的影响。结果表明,与常规球磨相比,在镁粉中添加2wt% SDBS和在Al2O3晶须中添加2wt% CTAB可促进均匀复合粉末的形成。与此同时,第一性原理计算结果也表明,Al2O3晶须增强剂与Mg基体之间的粘聚力比未修饰复合粉体更强。随后,采用粉末冶金法制备复合材料后,对复合材料的形貌、晶粒尺寸、硬度和标准差系数进行了分析,以评价复合材料的分散效率。结果表明,经均匀分散的Al2O3晶须改性后,复合材料的晶粒尺寸和硬度分别比纯Mg提高了26%和20%,硬度标准差系数比球磨试样降低了32.5%。
  • Research Article

    Effect of potential difference between nano-Al2O3 whisker and Mg matrix on the dispersion of Mg composites

    + Author Affiliations
    • The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al2O3 whiskers in Mg matrix composites. The Mg powders were decorated with sodium dodecylbenzene sulfonate (C18H29NaO3S, SDBS) and were introduced to the cathode group on their surface. The Al2O3 whiskers were modified by the cetyl trimethyl ammonium bromide (C19H42BrN, CTAB) and were featured in the anode group. The suitable contents of CTAB and SDBS, the application atmosphere, and the type of solvents were investigated. Dispersion results showed that adding 2wt% SDBS into Mg powders and adding 2wt% CTAB into Al2O3 whiskers promoted the formation of more uniformly mixed composite powders, compared to those of conventional ball milling via scanning electron microscopy (SEM) analysis. Meanwhile, the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al2O3 whisker reinforcements and Mg matrix than undecorated composite powders. After preparation by powder metallurgy, the morphology, grain size, hardness, and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency. The results indicated that the modification of homogenized dispersed Al2O3 whiskers in composites contributed to the refinement of 26% in grain size and the improvement of 20% in hardness compared with pure Mg, and the reduction of 32.5% in the standard deviation coefficient of hardness compared with the ball-milling sample.
    • loading
    • [1]
      E. Karthick, J. Mathai, J.M. Tony, and S.K. Marikkannan, Processing, microstructure and mechanical properties of Al2O3 and SiC reinforced magnesium metal matrix hybrid composites, Mater. Today Proc., 4(2017), No. 6, p. 6750. doi: 10.1016/j.matpr.2017.06.451
      [2]
      Y.W. Wu, K. Wu, K.K. Deng, et al., Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite, J. Alloys Compd., 506(2010), No. 2, p. 688. doi: 10.1016/j.jallcom.2010.07.043
      [3]
      B. Lei, B. Jiang, H.B. Yang, et al., Effect of Nd addition on the microstructure and mechanical properties of extruded Mg–Gd–Zr alloy, Mater. Sci. Eng. A, 816(2021), art. No. 141320. doi: 10.1016/j.msea.2021.141320
      [4]
      H.B. Yang, L. Wu, B. Jiang, et al., Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg–Li alloys for primary Mg-air batteries, J. Mater. Sci. Technol., 62(2021), p. 128. doi: 10.1016/j.jmst.2020.05.067
      [5]
      J.X. Yang, G.L. Koons, G. Cheng, L.H. Zhao, A.G. Mikos, and F.Z. Cui, A review on the exploitation of biodegradable magnesium-based composites for medical applications, Biomed. Mater., 13(2018), No. 2, art. No. 022001. doi: 10.1088/1748-605X/aa8fa0
      [6]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [7]
      W.J. Liu, B. Jiang, H.C. Xiang, et al., High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1373. doi: 10.1007/s12613-022-2456-x
      [8]
      C. He, Y.B. Zhang, M. Yuan, et al., Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1322. doi: 10.1007/s12613-021-2384-1
      [9]
      H. Yang, X.H. Chen, G.S. Huang, et al., Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective, J. Magnes. Alloys, 2022. https://doi.org/10.1016/j.jma.2022.07.008
      [10]
      J.H. Liang, H.J. Li, L.H. Qi, et al., Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion, J. Alloys Compd., 728(2017), p. 282. doi: 10.1016/j.jallcom.2017.09.009
      [11]
      H.M. Xie, Y.Y. Wei, B. Jiang, C.P. Tang, and C.Y. Nie, Tribological properties of carbon nanotube/SiO2 combinations as water-based lubricant additives for magnesium alloy, J. Mater. Res. Technol., 12(2021), p. 138. doi: 10.1016/j.jmrt.2021.02.079
      [12]
      L.L. Meng, X.S. Hu, X.J. Wang, et al., Graphene nanoplatelets reinforced Mg matrix composite with enhanced mechanical properties by structure construction, Mater. Sci. Eng. A, 733(2018), p. 414. doi: 10.1016/j.msea.2018.07.056
      [13]
      S. Jabbarzare, H.R. Bakhsheshi-Rad, A.A. Nourbakhsh, T. Ahmadi, and F. Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 305. doi: 10.1007/s12613-020-2201-2
      [14]
      P. Xiao, Y.M. Gao, F.X. Xu, et al., An investigation on grain refinement mechanism of TiB2 particulate reinforced AZ91 composites and its effect on mechanical properties, J. Alloys Compd., 780(2019), p. 237. doi: 10.1016/j.jallcom.2018.11.253
      [15]
      M.Y. Zheng, K. Wu, and C.K. Yao, Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites, Mater. Sci. Eng. A, 318(2001), No. 1-2, p. 50. doi: 10.1016/S0921-5093(01)01338-7
      [16]
      H. Tsukamoto, Enhancement of mechanical properties of SiCw/SiCp-reinforced magnesium composites fabricated by spark plasma sintering, Results Mater., 9(2021), art. No. 100167. doi: 10.1016/j.rinma.2020.100167
      [17]
      X.P. Zhang, H.X. Wang, L.P. Bian, et al., Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966. doi: 10.1007/s12613-020-2123-z
      [18]
      Y.C. Yu, S.W. Tang, Z.L. Wang, and J. Hu, Effects of coating contents on the interfacial reaction and tensile properties of Al2O3 coated-Al18B4O33w/Al–Mg matrix composites, Mater. Charact., 107(2015), p. 327. doi: 10.1016/j.matchar.2015.07.029
      [19]
      X.S. Zeng, Y. Liu, Q.Y. Huang, G. Zeng, and G.H. Zhou, Effects of carbon nanotubes on the microstructure and mechanical properties of the wrought Mg–2.0Zn alloy, Mater. Sci. Eng. A, 571(2013), p. 150. doi: 10.1016/j.msea.2013.02.014
      [20]
      Q.H. Yuan, G.H. Zhou, L. Liao, Y. Liu, and L. Luo, Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets, Carbon, 127(2018), p. 177. doi: 10.1016/j.carbon.2017.10.090
      [21]
      P. Xiao, Y.M. Gao, F.X. Xu, et al., Tribological behavior of in situ nanosized TiB2 particles reinforced AZ91 matrix composite, Tribol. Int., 128(2018), p. 130. doi: 10.1016/j.triboint.2018.07.003
      [22]
      Y.P. Zhu, P.P. Jin, W.D. Fei, S.C. Xu, and J.H. Wang, Effects of Mg2B2O5 whiskers on microstructure and mechanical properties of AZ31B magnesium matrix composites, Mater. Sci. Eng. A, 684(2017), p. 205. doi: 10.1016/j.msea.2016.12.035
      [23]
      S. Arai, Y. Suzuki, J. Nakagawa, T. Yamamoto, and M. Endo, Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum, Surf. Coat. Technol., 212(2012), p. 207. doi: 10.1016/j.surfcoat.2012.09.051
      [24]
      W.M. Tucho, H. Mauroy, J.C. Walmsley, S. Deledda, R. Holmestad, and B.C. Hauback, The effects of ball milling intensity on morphology of multiwall carbon nanotubes, Scripta Mater., 63(2010), No. 6, p. 637. doi: 10.1016/j.scriptamat.2010.05.039
      [25]
      H. Yu, Y. Sun, L.X. Hu, Z.P. Wan, and H.P. Zhou, The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling, J. Alloys Compd., 704(2017), p. 537. doi: 10.1016/j.jallcom.2017.02.029
      [26]
      M. Estili and A. Kawasaki, An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions, Scripta Mater., 58(2008), No. 10, p. 906. doi: 10.1016/j.scriptamat.2008.01.016
      [27]
      W. Gong, X.C. Li, and B.Q. Zhu, Modeling calculation and synthesis of alumina whiskers based on the vapor deposition process, Materials, 10(2017), No. 10, art. No. 1192. doi: 10.3390/ma10101192
      [28]
      F. Zuo, F. Meng, D.T. Lin, et al., Influence of whisker-aspect-ratio on densification, microstructure and mechanical properties of Al2O3 whiskers-reinforced CeO2-stabilized ZrO2 composites, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1796. doi: 10.1016/j.jeurceramsoc.2017.11.037
      [29]
      J. Corrochano, C. Cerecedo, V. Valcárcel, M. Lieblich, and F. Guitián, Whiskers of Al2O3 as reinforcement of a powder metallurgical 6061 aluminium matrix composite, Mater. Lett., 62(2008), No. 1, p. 103. doi: 10.1016/j.matlet.2007.04.080
      [30]
      X.Y. Qu, F.C. Wang, C.S. Shi, et al., In situ synthesis of a gamma-Al2O3 whisker reinforced aluminium matrix composite by cold pressing and sintering, Mater. Sci. Eng. A, 709(2018), p. 223. doi: 10.1016/j.msea.2017.10.063
      [31]
      L. Wang, Q.G. Fu, and F.L. Zhao, Improving oxidation resistance of MoSi2 coating by reinforced with Al2O3 whiskers, Intermetallics, 94(2018), p. 106. doi: 10.1016/j.intermet.2017.12.023
      [32]
      H.W. Zhang, D.G. Zhu, S. Grasso, and C.F. Hu, Tunable morphology of aluminum oxide whiskers grown by hydrothermal method, Ceram. Int., 44(2018), No. 13, p. 14967. doi: 10.1016/j.ceramint.2018.05.072
      [33]
      D.S. Zhu, X.F. Li, N. Wang, X.J. Wang, J.W. Gao, and H. Li, Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids, Curr. Appl. Phys., 9(2009), No. 1, p. 131. doi: 10.1016/j.cap.2007.12.008
      [34]
      S.J. Clark, M.D. Segall, C.J. Pickard, et al., First principles methods using CASTEP, Z. Kristallogr., 220(2005), No. 5-6, p. 567.
      [35]
      M. Marlo and V. Milman, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys. Rev. B, 62(2000), No. 4, p. 2899. doi: 10.1103/PhysRevB.62.2899
      [36]
      X.J. Wang, D.S. Zhu, and S. Yang, Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chem. Phys. Lett., 470(2009), No. 1-3, p. 107. doi: 10.1016/j.cplett.2009.01.035
      [37]
      P.L. Chen, Z.X. Zhong, F. Liu, and W.H. Xing, Cleaning ceramic membranes used in treating desizing wastewater with a complex-surfactant SDBS-assisted method, Desalination, 365(2015), p. 25. doi: 10.1016/j.desal.2015.01.037
      [38]
      X.L. Tan, M. Fang, C.L. Chen, S.M. Yu, and X.K. Wang, Counterion effects of nickel and sodium dodecylbenzene sulfonate adsorption to multiwalled carbon nanotubes in aqueous solution, Carbon, 46(2008), No. 13, p. 1741. doi: 10.1016/j.carbon.2008.07.023
      [39]
      S.L. Xiang, X.J. Wang, M. Gupta, K. Wu, X.S. Hu, and M.Y. Zheng, Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties, Sci. Rep., 6(2016), art. No. 38824. doi: 10.1038/srep38824
      [40]
      A. Nevarez-Rascon, A. Aguilar-Elguezabal, E. Orrantia, and M.H. Bocanegra-Bernal, Compressive strength, hardness and fracture toughness of Al2O3 whiskers reinforced ZTA and ATZ nanocomposites: Weibull analysis, Int. J. Refract. Met. Hard Mater., 29(2011), No. 3, p. 333. doi: 10.1016/j.ijrmhm.2010.12.008
      [41]
      R.A. Saravanan and M.K. Surappa, Fabrication and characterisation of pure magnesium–30 vol.% SiCp particle composite, Mater. Sci. Eng. A, 276(2000), No. 1-2, p. 108. doi: 10.1016/S0921-5093(99)00498-0
      [42]
      D.G. Altman and J.M. Bland, Standard deviations and standard errors, BMJ, 331(2005), No. 7521, art. No. 903. doi: 10.1136/bmj.331.7521.903

    Catalog


    • /

      返回文章
      返回