留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(7)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1749
  • HTML全文浏览量:  588
  • PDF下载量:  180
  • 被引次数: 0
Xiang Li, Baozhong Ma, Chengyan Wang, Die Hu, Yingwei Lü,  and Yongqiang Chen, Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 989-1002. https://doi.org/10.1007/s12613-022-2552-y
Cite this article as:
Xiang Li, Baozhong Ma, Chengyan Wang, Die Hu, Yingwei Lü,  and Yongqiang Chen, Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 989-1002. https://doi.org/10.1007/s12613-022-2552-y
引用本文 PDF XML SpringerLink
特约综述

废旧铜铟镓硒太阳能电池材料回收的研究进展

  • 通讯作者:

    马保中    E-mail: bzhma_ustb@yeah.net

    王成彦    E-mail: chywang@yeah.net

文章亮点

  • (1) 系统地总结了近年来铜铟镓硒太阳能电池废料回收的技术进展。
  • (2) 比较了铜铟镓硒太阳能电池不同回收工艺的优缺点。
  • (3) 在对现有方法归纳的基础上,为铜铟镓硒太阳能电池回收技术的发展提出了建议。
  • 铜铟镓硒(CIGS)太阳能电池因其光电转化效率高、环保、光稳定性好等优点,成为了近年来的研究热点。随着全球化石能源的日渐枯竭,可以预见铜铟镓硒太阳能电池需求量将在未来很长一段时间内继续增长。铜铟镓硒太阳能电池虽然发展迅猛,但制造过程中铟镓等稀散金属的应用成为限制其发展的重要因素,而回收废弃铜铟镓硒电池组件中的有价金属元素,是弥补这一不足的有效方法。本文综述了近年来从废弃铜铟镓硒太阳能电池中回收有价金属的技术进展。基于退役铜铟镓硒太阳能电池组件和铜铟镓硒太阳能电池制备过程产生的过程废物,对现有包括湿法回收、火法回收和综合处理工艺等回收方法进行了总结;并比较了各种方法的优缺点;概述了铜铟镓硒电池回收过程可能产生的环境影响;分析了后续分离组分纯化与再利用方面存在的挑战。本文为未来铜铟镓硒太阳能电池回收工艺的开发、优化、和工业化应用提供了一些参考。
  • Invited Review

    Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review

    + Author Affiliations
    • Copper–indium–gallium–diselenide (CIGS) is a fast-evolving commercial solar cell. The firm demand for global carbon reduction and the rise of potential environmental threats necessitate spent CIGS solar cell recycling. In this paper, the sources and characteristics of valuable metals in spent CIGS solar cells were reviewed. The potential environmental impacts of CIGS, including service life, critical material, and material toxicity, were outlined. The main recovery methods of valuable metals in the various types of spent CIGS, including hydrometallurgy, pyrometallurgy, and comprehensive treatment processes, were compared and discussed. The mechanism of different recovery processes was summarized. The challenges faced by different recycling processes of spent CIGS were also covered in this review. Finally, the economic viability of the recycling process was assessed. The purpose of this review is to provide reasonable suggestions for the sustainable development of CIGS and the harmless disposal of spent CIGS.
    • loading
    • [1]
      P. Yilmaz, J. Schmitz, and M. Theelen, Potential induced degradation of CIGS PV systems: A literature review, Renewable Sustainable Energy Rev., 154(2022), art. No. 111819. doi: 10.1016/j.rser.2021.111819
      [2]
      A.K. Patel, R. Mishra, and S.K. Soni, Performance enhancement of CIGS solar cell with two dimensional MoS2 hole transport layer, Micro Nanostructures, 165(2022), art. No. 207195. doi: 10.1016/j.micrna.2022.207195
      [3]
      J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden–Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49. doi: 10.1007/s12613-021-2341-z
      [4]
      M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, et al., Solar cell efficiency tables (Version 60), Prog. Photovoltaics Res. Appl., 30(2022), No. 7, p. 687. doi: 10.1002/pip.3595
      [5]
      M.A. Green, Y. Hishikawa, E.D. Dunlop, et al., Solar cell efficiency tables (Version 53), Prog. Photovoltaics Res. Appl., 27(2019), No. 1, p. 3. doi: 10.1002/pip.3102
      [6]
      F.E. Cherif and H. Sammouda, Prediction of the power conversion efficiency of Perovskite-on-CIGS tandem and triple junctions thin-film cells under solar concentration irradiations by optimization of structural and optoelectronic materials characteristic, Mater. Sci. Eng. B, 280(2022), p. 115712. doi: 10.1016/j.mseb.2022.115712
      [7]
      N.G. Dhere, Toward GW/year of CIGS production within the next decade, Sol. Energy Mater. Sol. Cells, 91(2007), No. 15-16, p. 1376. doi: 10.1016/j.solmat.2007.04.003
      [8]
      Y.J. Zhou, J.W. Li, H. Rechberger, et al., Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050, J. Clean. Prod., 263(2020), art. No. 121599. doi: 10.1016/j.jclepro.2020.121599
      [9]
      L. Rocchetti and F. Beolchini, Recovery of valuable materials from end-of-life thin-film photovoltaic panels: Environmental impact assessment of different management options, J. Clean. Prod., 89(2015), p. 59. doi: 10.1016/j.jclepro.2014.11.009
      [10]
      V. Fthenakis, W.M. Wang, and H.C. Kim, Life cycle inventory analysis of the production of metals used in photovoltaics, Renewable Sustainable Energy Rev., 13(2009), No. 3, p. 493. doi: 10.1016/j.rser.2007.11.012
      [11]
      J.E. De-la-Cruz-Moreno, A.E. Ceniceros-Gómez, O. Morton-Bermea, and E. Hernández-Álvarez, Recovery of indium from jarosite residues of zinc refinery by a hydrometallurgical process, Hydrometallurgy, 203(2021), art. No. 105697. doi: 10.1016/j.hydromet.2021.105697
      [12]
      Z.G. Deng, X.B. Li, C. Wei, G. Fan, M.T. Li, and C.X. Li, Recovery of indium from hard zinc slag by pressure leaching and solvent extraction, JOM, 73(2021), No. 2, p. 721. doi: 10.1007/s11837-020-04519-4
      [13]
      K.F. Zhang, L.L. Qiu, J.Z. Tao, et al., Recovery of gallium from leach solutions of zinc refinery residues by stepwise solvent extraction with N235 and Cyanex 272, Hydrometallurgy, 205(2021), art. No. 105722. doi: 10.1016/j.hydromet.2021.105722
      [14]
      F.W. Liu, G. Biesold, M. Zhang, et al., Recycling and recovery of perovskite solar cells, Mater. Today, 43(2021), p. 185. doi: 10.1016/j.mattod.2020.11.024
      [15]
      F. Maddah, M. Alitabar, and H. Yoozbashizadeh, Reductive leaching of indium from the neutral leaching residue using oxalic acid in sulfuric acid solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 373. doi: 10.1007/s12613-020-1974-7
      [16]
      K. Kacha, F. Djeffal, H. Ferhati, et al., Efficiency improvement of CIGS solar cells using RF sputtered TCO/Ag/TCO thin-film as prospective buffer layer, Ceram. Int., 48(2022), No. 14, p. 20194. doi: 10.1016/j.ceramint.2022.03.298
      [17]
      P. Misra, S. Mandati, T.N. Rao, and B.V. Sarada, A multi-layer Cu: Ga/In sputtered precursor to improve structural properties of CIGS absorber layer, Mater. Today Proc., 39(2021), p. 2037. doi: 10.1016/j.matpr.2020.09.545
      [18]
      F.T. Munna, V. Selvanathan, K. Sobayel, et al., Diluted chemical bath deposition of CdZnS as prospective buffer layer in CIGS solar cell, Ceram. Int., 47(2021), No. 8, p. 11003. doi: 10.1016/j.ceramint.2020.12.222
      [19]
      M. Acciarri, A. Le Donne, S. Marchionna, et al., CIGS thin films grown by hybrid sputtering-evaporation method: Properties and PV performance, Sol. Energy, 175(2018), p. 16. doi: 10.1016/j.solener.2018.02.024
      [20]
      C. Candelise, M. Winskel, and R. Gross, Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity, Prog. Photovolt: Res. Appl., 20(2012), No. 6, p. 816. doi: 10.1002/pip.2216
      [21]
      V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells, Renewable Sustainable Energy Rev., 13(2009), No. 9, p. 2746. doi: 10.1016/j.rser.2009.05.001
      [22]
      N. Mufti, T. Amrillah, A. Taufiq, et al., Review of CIGS-based solar cells manufacturing by structural engineering, Sol. Energy, 207(2020), p. 1146. doi: 10.1016/j.solener.2020.07.065
      [23]
      L.L. Yan, Y.M. Bai, B. Yang, et al., Extending absorption of near-infrared wavelength range for high efficiency CIGS solar cell via adjusting energy band, Curr. Appl. Phys., 18(2018), No. 4, p. 484. doi: 10.1016/j.cap.2017.12.015
      [24]
      L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
      [25]
      A. Urbina, The balance between efficiency, stability and environmental impacts in perovskite solar cells: A review, J. Phys. Energy, 2(2020), No. 2, art. No. 022001. doi: 10.1088/2515-7655/ab5eee
      [26]
      S. Resalati, T. Okoroafor, A. Maalouf, E. Saucedo, and M. Placidi, Life cycle assessment of different chalcogenide thin-film solar cells, Appl. Energy, 313(2022), art. No. 118888. doi: 10.1016/j.apenergy.2022.118888
      [27]
      L. Stamford and A. Azapagic, Environmental impacts of copper–indium–gallium–selenide (CIGS) photovoltaics and the elimination of cadmium through atomic layer deposition, Sci. Total Environ., 688(2019), p. 1092. doi: 10.1016/j.scitotenv.2019.06.343
      [28]
      J.H. Zheng, L.X. Zhu, Z.T. Shen, et al., Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
      [29]
      J.F. Guillemoles, The puzzle of Cu(In,Ga)Se2 (CIGS) solar cells stability, Thin Solid Films, 403-404(2002), p. 405. doi: 10.1016/S0040-6090(01)01519-X
      [30]
      P.R. Elowe, M.A. Stempki, S.J. Rozeveld, and M.W. DeGroot, Development of direct cell inorganic barrier film technology providing exceptional device stability for CIGS solar cells, Chem. Mater., 23(2011), No. 17, p. 3915. doi: 10.1021/cm201281v
      [31]
      Z.B. Que, L. Chu, S.B. Zhai, et al., Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280. doi: 10.1007/s12613-021-2361-8
      [32]
      A.F. Sherwani, J.A. Usmani, and Varun, Life cycle assessment of solar PV based electricity generation systems: A review, Renewable Sustainable Energy Rev., 14(2010), No. 1, p. 540. doi: 10.1016/j.rser.2009.08.003
      [33]
      P.G.V. Sampaio and M.O.A. González, Photovoltaic solar energy: Conceptual framework, Renewable Sustainable Energy Rev., 74(2017), p. 590. doi: 10.1016/j.rser.2017.02.081
      [34]
      Y.B. Liu, B.Z. Ma, Y.W. Lü, C.Y. Wang, and Y.Q. Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 209. doi: 10.1007/s12613-022-2544-y
      [35]
      X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
      [36]
      Z.Y. Ma, H.Y. Yang, S.T. Huang, Y. Lü, and L. Xiong, Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 582. doi: 10.1007/s12613-015-1110-2
      [37]
      A.K. Tan, N.A. Hamzah, M.A. Ahmad, S.S. Ng, and Z. Hassan, Recent advances and challenges in the MOCVD growth of indium gallium nitride: A brief review, Mater. Sci. Semicond. Process., 143(2022), art. No. 106545. doi: 10.1016/j.mssp.2022.106545
      [38]
      V. Kashyap and P. Taylor, Extraction and recovery of zinc and indium from residue rich in zinc ferrite, Miner. Eng., 176(2022), art. No. 107364. doi: 10.1016/j.mineng.2021.107364
      [39]
      F.H. Lu, T.F. Xiao, J. Lin, et al., Resources and extraction of gallium: A review, Hydrometallurgy, 174(2017), p. 105. doi: 10.1016/j.hydromet.2017.10.010
      [40]
      S. Padhy, V. Kumar, N.B. Chaure, and U.P. Singh, Impact of germanium nano layer on the CZTSe absorber layer properties, Mater. Sci. Semicond. Process., 138(2022), art. No. 106276. doi: 10.1016/j.mssp.2021.106276
      [41]
      C. Rachidy, B. Hartiti, S. Touhtouh, et al., Enhancing CZTS solar cell parameters using CZTSe BSF layer and non-toxic SnS2/In2S3 buffer layer, Mater. Today Proc., 66(2022), p. 26. doi: 10.1016/j.matpr.2022.03.106
      [42]
      P.M. Reshmi, A.G. Kunjomana, and K.A. Chandrasekharan, Electrical and mechanical properties of vapour grown gallium monotelluride crystals, Int. J. Miner. Metall. Mater., 20(2013), No. 10, p. 967. doi: 10.1007/s12613-013-0822-4
      [43]
      A. Haddout, M. Fahoume, A. Qachaou, A. Raidou, M. Lharch, and N. Elharfaoui, Influence of composition ratio on the performances of kesterite solar cell with double CZTS layers—A numerical approach, Sol. Energy, 189(2019), p. 491. doi: 10.1016/j.solener.2019.07.098
      [44]
      B.A. Andersson, Materials availability for large-scale thin-film photovoltaics, Prog. Photovolt: Res. Appl., 8(2000), No. 1, p. 61. doi: 10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO;2-6
      [45]
      C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
      [46]
      Z.K. Zhao, H.L. Xie, Z.Y. Wen, et al., Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488. doi: 10.1007/s12613-020-2232-8
      [47]
      J.P. Namahoro, Q.S. Wu, and H. Su, The copper production and economic growth nexus across the regional and global levels, Resour. Policy, 76(2022), art. No. 102583. doi: 10.1016/j.resourpol.2022.102583
      [48]
      E.V. Maistruk, I.G. Orletskyi, M.I. Ilashchuk, et al., ZnO:Al/ZnS/n-CdTe heterojunctions’ electric and photoelectric properties, Optik, 276(2023), p. 170663. doi: 10.1016/j.ijleo.2023.170663
      [49]
      W. Tefera, L. Tang, L.L. Lu, R.H. Xie, W. Seifu, and S.K. Tian, Rice cultivars significantly mitigate cadmium accumulation in grains and its bioaccessibility and toxicity in human HL-7702 cells, Environ. Pollut., 272(2021), art. No. 116020. doi: 10.1016/j.envpol.2020.116020
      [50]
      F.F. Jaldurgam, Z. Ahmad, F. Touati, et al., Enhancement of thermoelectric properties of low-toxic and earth-abundant copper selenide thermoelectric material by microwave annealing, J. Alloys Compd., 904(2022), art. No. 164131. doi: 10.1016/j.jallcom.2022.164131
      [51]
      A. Tanaka, M. Hirata, Y. Kiyohara, et al., Review of pulmonary toxicity of indium compounds to animals and humans, Thin Solid Films, 518(2010), No. 11, p. 2934. doi: 10.1016/j.tsf.2009.10.123
      [52]
      E.M. Bomhard, The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide, Environ. Toxicol. Pharmacol., 80(2020), art. No. 103437. doi: 10.1016/j.etap.2020.103437
      [53]
      D.A. Eisenberg, M.J. Yu, C.W. Lam, O.A. Ogunseitan, and J.M. Schoenung, Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics, J. Hazard. Mater., 260(2013), p. 534. doi: 10.1016/j.jhazmat.2013.06.007
      [54]
      H.I. Hsiang, C.Y. Chiang, W.H. Hsu, W.S. Chen, and J.E. Chang, Leaching and re-synthesis of CIGS nanocrystallites from spent CIGS targets, Adv. Powder Technol., 27(2016), No. 3, p. 914. doi: 10.1016/j.apt.2016.02.012
      [55]
      S. Gu, B.T. Fu, G. Dodbiba, T. Fujita, and B.Z. Fang, Promising approach for recycling of spent CIGS targets by combining electrochemical techniques with dehydration and distillation, ACS Sustain. Chem. Eng., 6(2018), No. 5, p. 6950. doi: 10.1021/acssuschemeng.8b00787
      [56]
      A.M.K. Gustafsson, M.R.S. Foreman, and C. Ekberg, Recycling of high purity selenium from CIGS solar cell waste materials, Waste Manage., 34(2014), No. 10, p. 1775. doi: 10.1016/j.wasman.2013.12.021
      [57]
      Y.W. Lv, P. Xing, B.Z. Ma, et al., Separation and recovery of valuable elements from spent CIGS materials, ACS Sustain. Chem. Eng., 7(2019), No. 24, p. 19816. doi: 10.1021/acssuschemeng.9b05121
      [58]
      B.Z. Ma, X. Li, B. Liu, et al., Effective separation and recovery of valuable components from CIGS chamber waste via controlled phase transformation and selective leaching, ACS Sustain. Chem. Eng., 8(2020), p. 3026. doi: 10.1021/acssuschemeng.0c00138
      [59]
      F.W. Liu, T.M. Cheng, Y.J. Chen, et al., High-yield recycling and recovery of copper, indium, and gallium from waste copper indium gallium selenide thin-film solar panels, Sol. Energy Mater. Sol. Cells, 241(2022), art. No. 111691. doi: 10.1016/j.solmat.2022.111691
      [60]
      A. Amato and F. Beolchini, End-of-life CIGS photovoltaic panel: A source of secondary indium and gallium, Prog. Photovoltaics Res. Appl., 27(2019), No. 3, p. 229. doi: 10.1002/pip.3082
      [61]
      W. Palitzsch and U. Loser, Systematic photovoltaic waste recycling, Green, 3(2013), No. 1, p. 79. doi: 10.1515/green-2013-0008
      [62]
      K. Kushiya, M. Ohshita, and M. Tanaka, Development of recycling and reuse technologies for large-area Cu(InGa)Se2-based thin-film modules, [in] Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, 2003, p. 1892.
      [63]
      A.M.K. Gustafsson, B.M. Steenari, and C. Ekberg, Recycling of CIGS solar cell waste materials: Separation of copper, indium, and gallium by high-temperature chlorination reaction with ammonium chloride, Sep. Sci. Technol., 50(2015), No. 15, p. 2415. doi: 10.1080/01496395.2015.1053569
      [64]
      A.M.K. Gustafsson, B.M. Steenari, and C. Ekberg, Evaluation of high-temperature chlorination as a process for separation of copper, indium and gallium from CIGS solar cell waste materials, Sep. Sci. Technol., 50(2015), No. 1, p. 1. doi: 10.1080/01496395.2014.949350
      [65]
      W.T. Xu, Q. Song, G.C. Song, and Q. Yao, The vapor pressure of Se and SeO2 measurement using thermogravimetric analysis, Thermochim. Acta, 683(2020), art. No. 178480. doi: 10.1016/j.tca.2019.178480
      [66]
      G.R. Waitkins and C.W. Clark, Selenium dioxide: Preparation, properties, and use as oxidizing agent, Chem. Rev., 36(1945), No. 3, p. 235. doi: 10.1021/cr60115a001
      [67]
      J. Yang, Z.L. Zhang, G. Zhang, et al., Process study of chloride roasting and water leaching for the extraction of valuable metals from spent lithium-ion batteries, Hydrometallurgy, 203(2021), art. No. 105638. doi: 10.1016/j.hydromet.2021.105638
      [68]
      R. Panda, K.K. Pant, T. Bhaskar, and S.N. Naik, Dissolution of brominated epoxy resin for environment friendly recovery of copper as cupric oxide nanoparticles from waste printed circuit boards using ammonium chloride roasting, J. Clean. Prod., 291(2021), art. No. 125928. doi: 10.1016/j.jclepro.2021.125928
      [69]
      V.J. Martínez-Gómez, J.C. Fuentes-Aceituno, R. Pérez-Garibay, and J.C. Lee, A study of the electro-assisted reductive leaching of a chalcopyrite concentrate in HCl solutions. Part I: Kinetic behavior and nature of the chalcopyrite reduction, Hydrometallurgy, 181(2018), p. 195. doi: 10.1016/j.hydromet.2018.09.012
      [70]
      H.B. Zhao, J. Wang, X.W. Gan, et al., Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential, Hydrometallurgy, 164(2016), p. 159. doi: 10.1016/j.hydromet.2016.04.013
      [71]
      H. Chen, J.F. He, L.T. Zhu, et al., Eco-friendly oxidation leaching from chalcopyrite powder and kinetics assisted by sodium chloride in organic acid media, Adv. Powder Technol., 33(2022), No. 5, art. No. 103547. doi: 10.1016/j.apt.2022.103547
      [72]
      E.M. Córdoba, J.A. Muñoz, M.L. Blázquez, F. González, and A. Ballester, Leaching of chalcopyrite with ferric ion. Part I: General aspects, Hydrometallurgy, 93(2008), No. 3-4, p. 81. doi: 10.1016/j.hydromet.2008.04.015
      [73]
      H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
      [74]
      H. Nourmohamadi, M.D. Esrafili, V. Aghazadeh, and B. Rezai, The influence of Ag+ cation on elemental sulfur passive layer and adsorption behavior of chalcopyrite toward Fe3+ and Fe2+ ions: Insights from DFT calculations and molecular dynamics simulations, Physica B, 627(2022), p. 413611. doi: 10.1016/j.physb.2021.413611
      [75]
      D. Hu, B.Z. Ma, X. Li, Y.W. Lv, Y.Q. Chen, and C.Y. Wang, Innovative and sustainable separation and recovery of valuable metals in spent CIGS materials, J. Clean. Prod., 350(2022), art. No. 131426. doi: 10.1016/j.jclepro.2022.131426
      [76]
      D. Hu, B.Z. Ma, X. Li, et al., Efficient separation and recovery of gallium and indium in spent CIGS materials, Sep. Purif. Technol., 282(2022), art. No. 120087. doi: 10.1016/j.seppur.2021.120087
      [77]
      X. Li, B.Z. Ma, D. Hu, Q.Q. Zhao, Y.Q. Chen, and C.Y. Wang, Efficient separation and purification of indium and gallium in spent copper indium gallium diselenide (CIGS), J. Clean. Prod., 339(2022), art. No. 130658. doi: 10.1016/j.jclepro.2022.130658
      [78]
      W.S. Chen and S.M. Huang, The separation of indium and copper from spent Cu–In targets, Int. J. Appl. Ceram. Technol., 13(2016), No. 2, p. 274. doi: 10.1111/ijac.12515
      [79]
      W.S. Chen, Y.C. Wang, and K.L. Chiu, The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) targets, J. Environ. Chem. Eng., 5(2017), No. 1, p. 381. doi: 10.1016/j.jece.2016.12.005
      [80]
      H. Miyazaki, Recycling of CIGS absorber layer for deposition of CIGS film, Phys. Status Solidi C, 10(2013), No. 7-8, p. 1031. doi: 10.1002/pssc.201200826
      [81]
      W. Wang, C. Zhang, B. Hu, et al., Influence of alkali element post-deposition treatment on the performance of the CIGS solar cells on flexible stainless steel substrates, Mater. Lett., 302(2021), art. No. 130410. doi: 10.1016/j.matlet.2021.130410
      [82]
      M.W. Bouabdelli, F. Rogti, M. Maache, and A. Rabehi, Performance enhancement of CIGS thin-film solar cell, Optik, 216(2020), art. No. 164948. doi: 10.1016/j.ijleo.2020.164948
      [83]
      B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611. doi: 10.1007/s12613-022-2448-x

    Catalog


    • /

      返回文章
      返回