留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(12)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  479
  • HTML全文浏览量:  169
  • PDF下载量:  41
  • 被引次数: 0
Juncheng Li, Guoxuan Li, Feng Qiu, Rong Wang, Jinshan Liang, Yi Zhong, Dong Guan, Jingwei Li, Seetharaman Sridhar, and Zushu Li, Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 378-387. https://doi.org/10.1007/s12613-022-2553-x
Cite this article as:
Juncheng Li, Guoxuan Li, Feng Qiu, Rong Wang, Jinshan Liang, Yi Zhong, Dong Guan, Jingwei Li, Seetharaman Sridhar, and Zushu Li, Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 378-387. https://doi.org/10.1007/s12613-022-2553-x
引用本文 PDF XML SpringerLink
研究论文

改质钢渣中铁/磷富集相形核与长大行为研究

  • 通讯作者:

    李军成    E-mail: leejc2011@163.com

文章亮点

  • (1) 在线观测熔融改质钢渣(CaO–SiO2–FeO–P2O5–B2O3)的结晶行为。
  • (2) 理论计算Fe3O4与Ca10P6O25晶体的形核和长大速率。
  • (3) 总结并提出改质钢渣中Fe3O4与Ca10P6O25晶体选择性结晶长大的最佳温度区间。
  • 回收钢渣中的铁(Fe)和磷(P),不仅可以减轻钢渣堆积带来的环境负担,而且是钢铁工业发展循环经济、实现可持续发展的必由之路。本文旨在通过研究B2O3改质钢渣中富铁相(Fe3O4)和富磷相(Ca10P6O25)的结晶动力学规律确定Fe3O4与Ca10P6O25晶体可控生长的温度制度。本研究采用高温激光共聚焦扫描显微镜(CLSM)在线观测CaO–SiO2–FeO–P2O5–B2O3熔体的结晶行为,使用经典的结晶动力学理论计算Fe3O4与Ca10P6O25晶体的形核和长大速率。研究结果表明,CaO–SiO2–FeO–P2O5–B2O3熔体在冷却过程中初晶相Fe3O4析出温度范围为1300–1150°C,棒状的第二相Ca10P6O25在1150–1000°C温度区间内析出,且Fe3O4相的结晶能力大于Ca10P6O25相。综合考虑Fe3O4相与Ca10P6O25相的形核与长大速率,最终确定两相选择性结晶长大的最佳温度区间为(1055 ± 25)°C,即在1080–1030°C温度范围内对CaO–SiO2–FeO–P2O5–B2O3熔体进行缓慢冷却有利于Fe3O4与Ca10P6O25晶体的结晶长大,从而为后续从渣中选择性分离Fe3O4相与Ca10P6O25相创造了必要条件。
  • Research Article

    Nucleation and growth control for iron- and phosphorus-rich phases from a modified steelmaking waste slag

    + Author Affiliations
    • Recovering the iron (Fe) and phosphorus (P) contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag, but also is the way to develop a circular economy and achieve sustainable development in the steel industry. We had previously found the possibility of recovering Fe and P resources, i.e., magnetite (Fe3O4) and calcium phosphate (Ca10P6O25), contained in steelmaking slags by adjusting oxygen partial pressure and adding modifier B2O3. As a fundamental study for efficiently recovering Fe and P from steelmaking slag, in this study, the crystallization behavior of the CaO–SiO2–FeO–P2O5–B2O3 melt has been observed in situ, using a confocal scanning laser microscope (CLSM). The kinetics of nucleation and growth of Fe- and P-rich phases have been calculated using a classical crystallization kinetic theory. During cooling, a Fe3O4 phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300–1150°C, while Ca10P6O25, with rod-shaped morphology, was found to be the 2nd phase to precipitate in the interval of 1150–1000°C. The crystallization abilities of Fe3O4 and Ca10P6O25 phases in the CaO–SiO2–FeO–P2O5–B2O3 melt were quantified with the index of (TUTI)/TI (where TI represents the peak temperature of the nucleation rate and TU stands for that of growth rate), and the crystallization ability of Fe3O4 was found to be larger than that of Ca10P6O25 phase. The range of crystallization temperature for Fe3O4 and Ca10P6O25 phases was optimized subsequently. The Fe3O4 and Ca10P6O25 phases are the potential sources for ferrous feedstock and phosphate fertilizer, respectively.
    • loading
    • [1]
      I. Sosa, C. Thomas, J.A. Polanco, J. Setién, and P. Tamayo, High performance self-compacting concrete with electric arc furnace slag aggregate and cupola slag powder, Appl. Sci., 10(2020), No. 3, art. No. 773. doi: 10.3390/app10030773
      [2]
      G.M.P. Kumara and K. Kawamoto, Steel slag and autoclaved aerated concrete grains as low-cost adsorbents to remove Cd2+ and Pb2+ in wastewater: Effects of mixing proportions of grains and liquid-to-solid ratio, Sustainability, 13(2021), No. 18, art. No. 10321. doi: 10.3390/su131810321
      [3]
      Q.S. Wu and Z.C. Huang, Preparation and performance of lightweight porous ceramics using metallurgical steel slag, Ceram. Int., 47(2021), No. 18, p. 25169. doi: 10.1016/j.ceramint.2021.04.302
      [4]
      Z.J. Tang, J. Liang, W.H. Jiang, et al., Preparation of high strength foam ceramics from sand shale and steel slag, Ceram. Int., 46(2020), No. 7, p. 9256. doi: 10.1016/j.ceramint.2019.12.179
      [5]
      L. Lin, Y.Q. Liu, J.G. Zhi, et al., Influence of slag temperature on phosphorus enrichment in P-bearing steelmaking slag, Ironmaking Steelmaking, 48(2021), No. 3, p. 334. doi: 10.1080/03019233.2020.1780366
      [6]
      H. Matsuura, X. Yang, G.Q. Li, Z.F. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739. doi: 10.1007/s12613-021-2400-5
      [7]
      S. Seetharaman, L.J. Wang, and H.J. Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 750. doi: 10.1007/s12613-022-2424-5
      [8]
      J.H. Zhao, P.Y. Yan, and D.M. Wang, Research on mineral characteristics of converter steel slag and its comprehensive utilization of internal and external recycle, J. Cleaner Prod., 156(2017), p. 50. doi: 10.1016/j.jclepro.2017.04.029
      [9]
      L.M. Juckes, The volume stability of modern steelmaking slags, Trans. Inst. Min. Metall. Sect. C, 112(2003), No. 3, p. 177. doi: 10.1179/037195503225003708
      [10]
      F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, and B. Björkman, Crystallization behaviour of some steelmaking slags, Steel Res. Int., 81(2010), No. 5, p. 362. doi: 10.1002/srin.200900154
      [11]
      J.F.P. Gomes and C.G. Pinto, Leaching of heavy metals from steelmaking slags, Rev. Metal., 42(2006), No. 6, p. 409. doi: 10.3989/revmetalm.2006.v42.i6.39
      [12]
      L.J. Chen, Y. Wan, X.J. Xia, J. Li, Y.D. Yang, and A. Mclean, Dephosphorisation of hot metal containing moderate amounts of chromium with CaO–FeOx–Cr2O3–CaF2 slag, Ironmaking Steelmaking, 48(2021), No. 7, p. 868. doi: 10.1080/03019233.2021.1882645
      [13]
      D.J. Min, J.W. Han, and W.S. Chung, A study of the reduction rate of FeO in slag by solid carbon, Metall. Mater. Trans. B, 30(1999), No. 2, p. 215. doi: 10.1007/s11663-999-0050-5
      [14]
      D.Q. Fan, M. Elzohiery, Y. Mohassab, and H.Y. Sohn, The kinetics of carbon monoxide reduction of magnetite concentrate particles through CFD modelling, Ironmaking Steelmaking, 48(2021), No. 7, p. 769. doi: 10.1080/03019233.2020.1861857
      [15]
      A. Heidari, N. Niknahad, M. Iljana, and T. Fabritius, A review on the kinetics of iron ore reduction by hydrogen, Materials, 14(2021), No. 24, art. No. 7540. doi: 10.3390/ma14247540
      [16]
      A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman, Confocal microscopic studies on evolution of crystals during oxidation of the FeO–CaO–SiO2–MnO slags, Metall. Mater. Trans. B, 41(2010), No. 5, p. 940. doi: 10.1007/s11663-010-9392-2
      [17]
      A. Semykina, The kinetics of oxidation of liquid FeO–MnO–CaO–SiO2 slags in air, Metall. Mater. Trans. B, 43(2012), No. 1, p. 56. doi: 10.1007/s11663-011-9576-4
      [18]
      A. Semykina, J. Nakano, S. Sridhar, V. Shatokha, and S. Seetharaman, Confocal scanning laser microscopy studies of crystal growth during oxidation of a liquid FeO–CaO–SiO2 slag, Metall. Mater. Trans. B, 42(2011), No. 3, p. 471. doi: 10.1007/s11663-011-9505-6
      [19]
      W.J. Duan, Q.B. Yu, T.W. Wu, F. Yang, and Q. Qin, The steam gasification of coal with molten blast furnace slag as heat carrier and catalyst: Kinetic study, Int. J. Hydrogen Energy, 41(2016), No. 42, p. 18995. doi: 10.1016/j.ijhydene.2016.07.187
      [20]
      J.C. Li, D. Bhattacharjee, X.J. Hu, D.W. Zhang, S. Sridhar, and Z.S. Li, Crystallization behavior of liquid CaO–SiO2–FeO–MnO slag in relation to its reaction with moisture, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1931. doi: 10.1007/s11663-019-01595-z
      [21]
      J.C. Li, D. Bhattacharjee, X.J. Hu, D.W. Zhang, S. Sridhar, and Z.S. Li, Effects of slag composition on H2 generation and magnetic precipitation from molten steelmaking slag–steam reaction, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1023. doi: 10.1007/s11663-019-01533-z
      [22]
      B. Malvoisin, F. Brunet, J. Carlut, et al., High-purity hydrogen gas from the reaction between BOF steel slag and water in the 473–673 K range, Int. J. Hydrogen Energy, 38(2013), No. 18, p. 7382. doi: 10.1016/j.ijhydene.2013.03.163
      [23]
      W.Z. Wang, B. Liang, and J.R. Zhang, Experimental study on low temperature flotation recovery of apatite from a magnetic tailings, Appl. Mech. Mater., 522-524(2014), p. 1501. doi: 10.4028/www.scientific.net/AMM.522-524.1501
      [24]
      K. Matsubae-Yokoyama, H. Kubo, and T. Nagasaka, Recycling effects of residual slag after magnetic separation for phosphorus recovery from hot metal dephosphorization slag, ISIJ Int., 50(2010), No. 1, p. 65. doi: 10.2355/isijinternational.50.65
      [25]
      C. Li, J.T. Gao, F.Q. Wang, and Z.C. Guo, Enriching Fe-bearing and P-bearing phases from steelmaking slag melt by super gravity, Ironmaking Steelmaking, 45(2018), No. 1, p. 44. doi: 10.1080/03019233.2016.1236471
      [26]
      C. Li, J.T. Gao, and Z.C. Guo, Separation of phosphorus- and iron-enriched phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1516. doi: 10.1007/s11663-015-0494-8
      [27]
      C. Li, J.T. Gao, and Z.C. Guo, Isothermal enrichment of P-concentrating phase from CaO–SiO2–FeO–MgO–P2O5 melt with super gravity, ISIJ Int., 56(2016), No. 5, p. 759. doi: 10.2355/isijinternational.ISIJINT-2015-633
      [28]
      Y.Y. Zhang, Q.G. Xue, G. Wang, and J.S. Wang, Gasification and migration of phosphorus from high-phosphorus iron ore during carbothermal reduction, ISIJ Int., 58(2018), No. 12, p. 2219. doi: 10.2355/isijinternational.ISIJINT-2018-372
      [29]
      M. Sugata, T. Sugiyama, and S.I. Kondo, Reduction of iron oxide contained in molten slags with solid carbon, ISIJ Int., 14(1974), No. 2, p. 88. doi: 10.2355/isijinternational1966.14.88
      [30]
      S. Takeuchi, N. Sano, and Y. Matsushita, Separate recovery of iron and phosphorus from BOF slags by using Fe–Si alloys, Tetsu-to-Hagane, 66(1980), No. 14, p. 2050. doi: 10.2355/tetsutohagane1955.66.14_2050
      [31]
      C.M. Du, X. Gao, S. Ueda, and S.Y. Kitamura, Separation and recovery of phosphorus from steelmaking slag via a selective leaching-chemical precipitation process, Hydrometallurgy, 189(2019), art. No. 105109. doi: 10.1016/j.hydromet.2019.105109
      [32]
      T. Teratoko, N. Maruoka, H. Shibata, and S.Y. Kitamura, Dissolution behavior of dicalcium silicate and tricalcium phosphate solid solution and other phases of steelmaking slag in an aqueous solution, High Temp. Mater. Process., 31(2012), No. 4-5, p. 329. doi: 10.1515/htmp-2012-0032
      [33]
      M. Numata, N. Maruoka, S.J. Kim, and S.Y. Kitamura, Fundamental experiment to extract phosphorous selectively from steelmaking slag by leaching, ISIJ Int., 54(2014), No. 8, p. 1983. doi: 10.2355/isijinternational.54.1983
      [34]
      H.M. Xue, J. Li, Y.J. Xia, Y. Wan, L.J. Chen, and C.J. Lv, Mechanism of phosphorus enrichment in dephosphorization slag produced using the technology of integrating dephosphorization and decarburization, Metals, 11(2021), No. 2, art. No. 216. doi: 10.3390/met11020216
      [35]
      J.M. Gonzalez, C.J. Penn, and S.J. Livingston, Utilization of steel slag in blind inlets for dissolved phosphorus removal, Water, 12(2020), No. 6, art. No. 1593. doi: 10.3390/w12061593
      [36]
      G.F. Ye, J. Yang, R.H. Zhang, W.K. Yang, and H. Sun, Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 66. doi: 10.1007/s12613-020-2036-x
      [37]
      G.X. Li, J.S. Liang, J. Long, et al., A novel process for separation of magnetite and phosphorous phases from a CaO–SiO2–FeO–P2O5 slag, ISIJ Int., 62(2022), No. 7, p. 1556. doi: 10.2355/isijinternational.ISIJINT-2021-578
      [38]
      D. Turnbull, Formation of crystal nuclei in liquid metals, J. Appl. Phys., 21(1950), No. 10, p. 1022. doi: 10.1063/1.1699435
      [39]
      D. Turnbull, Under what conditions can a glass be formed? Contemp. Phys., 10(1969), No. 5, p. 473. doi: 10.1080/00107516908204405
      [40]
      J.C. Fisher, J.H. Hollomon, and D. Turnbull, Rate of nucleation of solid particles in a subcooled liquid, Science, 109(1949), No. 2825, p. 168. doi: 10.1126/science.109.2825.168.b
      [41]
      D.R. Uhlmann, A kinetic treatment of glass formation, J. Non-Cryst. Solids, 7(1972), No. 4, p. 337. doi: 10.1016/0022-3093(72)90269-4
      [42]
      I. Barin, Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1995, p. 478.
      [43]
      B. Li and Z.T. Sui, Glass crystallization kinetics of CaO–MgO–Fe2O3–Al2O3–SiO2 slags, Chin. J. Mater. Res., 13(1999), No. 4, p. 412.
      [44]
      P.X. Zhang, Z.T. Sui, D.M. Luo, and R.J. Ma, Study on crystallization kinetics of component containing boron in MgO–B2O3–SiO2–Al2O3–CaO slag, Chin. J. Mater. Res., 9(1995), No. 1, p. 66.
      [45]
      X. Zhang, B. Xie, J. Diao, and X.J. Li, Nucleation and growth kinetics of spinel crystals in vanadium slag, Ironmaking Steelmaking, 39(2012), No. 2, p. 147. doi: 10.1179/1743281211Y.0000000079
      [46]
      X. Lan, J.T. Gao, Z.W. Wang, and Z.C. Guo, Viscosity of RE-bearing slag systems and kinetics of nucleation and growth for RE-phases, Ceram. Int., 48(2022), No. 9, p. 13304. doi: 10.1016/j.ceramint.2022.01.209
      [47]
      K.C. Mills and S. Sridhar, Viscosities of ironmaking and steelmaking slags, Ironmaking Steelmaking, 26(1999), No. 4, p. 262. doi: 10.1179/030192399677121
      [48]
      E. Bordes-Richard, Multicomponent oxides in selective oxidation of alkanes theoretical acidity versus selectivity, Top. Catal., 50(2008), p. 82. doi: 10.1007/s11244-008-9115-y
      [49]
      X.F. Lei and X.X. Xue, Preparation, characterization and photocatalytic activity of sulfuric acid-modified titanium-bearing blast furnace slag, Trans. Nonferrous Met. Soc. China, 20(2010), No. 12, p. 2294. doi: 10.1016/S1003-6326(10)60643-7
      [50]
      Y.B. Zong, D.Q. Cang, Y.P. Zhen, Y. Li, and H. Bai, Component modification of steel slag in air quenching process to improve grindability, Trans. Nonferrous Met. Soc. China, 19(2009), Suppl. 3, p. s834.
      [51]
      G. Chen, J. Chen, J.H. Peng, and R.D. Wan, Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment, Trans. Nonferrous Met. Soc. China, 20(2010), Suppl. 1, p. s198.
      [52]
      W.L. Wang, S.F. Dai, T.S. Zhang, Z.M. Li, and Y.J. Xie, Effect of isothermal and cooling rate on crystallization and viscosity of silicomanganese waste slag, Ceram. Int., 47(2021), No. 10, p. 13622. doi: 10.1016/j.ceramint.2021.01.221
      [53]
      J.H. Wu, F.Q. Zhang, and G.H. Chen, A new method to estimate the ability of forming amorphous solids, Phys. Status Solidi A, 101(1987), No. 1, p. K1. doi: 10.1002/pssa.2211010131
      [54]
      W.A. Johnson and R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME, 135(1939), p. 416.

    Catalog


    • /

      返回文章
      返回