Cite this article as: |
Ziyue Zhao, Shuai Cao, and Erol Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 236-249. https://doi.org/10.1007/s12613-022-2557-6 |
曹帅 E-mail: sandy_cao@ustb.edu.cn
Erol Yilmaz E-mail: erol.yilmaz@erdogan.edu.tr
[1] |
G.S. Li, Z.Q. Hu, P.Y. Li, et al., Innovation for sustainable mining: Integrated planning of underground coal mining and mine reclamation, J. Clean. Prod., 351(2022), art. No. 131522. doi: 10.1016/j.jclepro.2022.131522
|
[2] |
Z.H. Wang, W.C. Sun, Y.T. Shui, and P.J. Liu, Mining-induced stress rotation trace and its sensitivity to face advance direction in kilometer deep longwall panel with large face length, J. China Coal Soc., 47(2022), No. 2, p. 634.
|
[3] |
Y. Xu, Z.J. Li, Y. Chen, et al., Synergetic mining of geothermal energy in deep mines: An innovative method for heat hazard control, Appl. Therm. Eng., 210(2022), art. No. 118398. doi: 10.1016/j.applthermaleng.2022.118398
|
[4] |
Y. Zhao, T.H. Yang, H.L. Liu, et al., A path for evaluating the mechanical response of rock masses based on deep mining-induced microseismic data: A case study, Tunn. Undergr. Space Technol., 115(2021), art. No. 104025. doi: 10.1016/j.tust.2021.104025
|
[5] |
S. Cao, G.L. Xue, W.D. Song, and Q. Teng, Strain rate effect on dynamic mechanical properties and microstructure of cemented tailings composites, Constr. Build. Mater., 247(2020), art. No. 118537. doi: 10.1016/j.conbuildmat.2020.118537
|
[6] |
U.G. Akkaya, K. Cinku, and E. Yilmaz, Characterization of strength and quality of cemented mine backfill made up of lead–zinc processing tailings, Front. Mater., 8(2021), art. No. 740116. doi: 10.3389/fmats.2021.740116
|
[7] |
Y.P. Kou, H.Q. Jiang, L. Ren, E. Yilmaz, and Y.H. Li, Rheological properties of cemented paste backfill with alkali-activated slag, Minerals, 10(2020), No. 3, art. No. 288. doi: 10.3390/min10030288
|
[8] |
W. Sun, D. Wu, H.B. Liu, and C.L. Qu, Thermal, mechanical and ultrasonic properties of cemented tailings backfill subjected to microwave radiation, Constr. Build. Mater., 313(2021), art. No. 125535. doi: 10.1016/j.conbuildmat.2021.125535
|
[9] |
S.J. Chen, A.B. Jin, Y.Q. Zhao, H. Li, and J. Wang, Mechanical properties and deformation mechanism of stratified cemented tailings backfill under unconfined compression, Constr. Build. Mater., 335(2022), art. No. 127205. doi: 10.1016/j.conbuildmat.2022.127205
|
[10] |
D. Zheng, W.D. Song, S. Cao, and J.J. Li, Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects, Constr. Build. Mater., 320(2022), art. No. 126321. doi: 10.1016/j.conbuildmat.2022.126321
|
[11] |
H.Q. Jiang, J. Han, Y.H. Li, et al., Relationship between ultrasonic pulse velocity and uniaxial compressive strength for cemented paste backfill with alkali-activated slag, Nondestruct. Test. Eval., 35(2020), No. 4, p. 359. doi: 10.1080/10589759.2019.1679140
|
[12] |
J.J. Li, E. Yilmaz, and S. Cao, Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill, Minerals, 10(2020), No. 10, art. No. 922. doi: 10.3390/min10100922
|
[13] |
A.P. Cheng, P.F. Shu, D.Q. Deng, et al., Microscopic acoustic emission simulation and fracture mechanism of cemented tailings backfill based on moment tensor theory, Constr. Build. Mater., 308(2021), art. No. 125069. doi: 10.1016/j.conbuildmat.2021.125069
|
[14] |
W.C. Li, L.J. Guo, G.S. Liu, A. Pan, and T.T. Zhang, Analytical and experimental investigation of the relationship between spread and yield stress in the mini-cone test for cemented tailings backfill, Constr. Build. Mater., 260(2020), art. No. 119770. doi: 10.1016/j.conbuildmat.2020.119770
|
[15] |
T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
|
[16] |
Y. Yang, D. Wu, L. He, and B.P. Wang, Coupled thermo–hydro–chemical effect on rheological behavior of fresh cemented tailings backfill, Adv. Powder Technol., 33(2022), No. 1, art. No. 103393. doi: 10.1016/j.apt.2021.12.012
|
[17] |
B.X. Yan, H.W. Jia, E. Yilmaz, et al., Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. doi: 10.1016/j.conbuildmat.2022.126327
|
[18] |
Q.S. Chen, K. Luo, Y.M. Wang, et al., In-situ stabilization/solidification of lead/zinc mine tailings by cemented paste backfill modified with low-carbon bentonite alternative, J. Mater. Res. Technol., 17(2022), p. 1200. doi: 10.1016/j.jmrt.2022.01.099
|
[19] |
C. Hou, W.C. Zhu, B.X. Yan, K. Guan, and J.F. Du, The effects of temperature and binder content on the behavior of frozen cemented tailings backfill at early ages, Constr. Build. Mater., 239(2020), art. No. 117752. doi: 10.1016/j.conbuildmat.2019.117752
|
[20] |
T. Kasap, E. Yilmaz, N.U. Guner, and M. Sari, Recycling dam tailings as cemented mine backfill: Mechanical and geotechnical properties, Adv. Mater. Sci. Eng., 2022(2022), art. No. 6993068. doi: 10.1155/2022/6993068
|
[21] |
G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement-tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131. doi: 10.1016/j.compositesb.2019.05.039
|
[22] |
E. Yilmaz, T. Belem, and M. Benzaazaou, One-dimensional consolidation parameters of cemented paste backfills, Miner. Resour. Manage., 28(2012), No. 4, p. 29. doi: 10.2478/v10269-012-0030-2
|
[23] |
A.A. Wang, S. Cao, and E. Yilmaz, Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading, Constr. Build. Mater., 322(2022), art. No. 126448. doi: 10.1016/j.conbuildmat.2022.126448
|
[24] |
Z.Q. Wang, Y. Wang, L. Cui, C. Bi, and A.X. Wu, Insight into the isothermal multiphysics processes in cemented paste backfill: Effect of curing time and cement-to-tailings ratio, Constr. Build. Mater., 325(2022), art. No. 126739. doi: 10.1016/j.conbuildmat.2022.126739
|
[25] |
G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
|
[26] |
S. Cao, G.L. Xue, and E. Yilmaz, Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending, IEEE Access, 7(2019), p. 139317. doi: 10.1109/ACCESS.2019.2943479
|
[27] |
Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
|
[28] |
Q.S. Chen, S.Y. Sun, Y.K. Liu, et al., Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
|
[29] |
I.L.S. Libos, L. Cui, and X.R. Liu, Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill, Constr. Build. Mater., 311(2021), art. No. 125302. doi: 10.1016/j.conbuildmat.2021.125302
|
[30] |
J.P. Qiu, J.C. Xiang, W.Q. Zhang, et al., Effect of microbial-cemented on mechanical properties of iron tailings backfill and its mechanism analysis, Constr. Build. Mater., 318(2022), art. No. 126001. doi: 10.1016/j.conbuildmat.2021.126001
|
[31] |
B.L. Xiao, Z.J. Wen, S.J. Miao, and Q. Gao, Utilization of steel slag for cemented tailings backfill: Hydration, strength, pore structure, and cost analysis, Case Stud. Constr. Mater., 15(2021), art. No. e00621. doi: 10.1016/j.cscm.2021.e00621
|
[32] |
A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[33] |
Z.Q. Huang, E. Yilmaz, and S. Cao, Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum, Minerals, 11(2021), No. 4, art. No. 409. doi: 10.3390/min11040409
|
[34] |
G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Analysis of internal structure behavior of fiber reinforced cement-tailings matrix composites through X-ray computed tomography, Composites Part B, 175(2019), art. No. 107091. doi: 10.1016/j.compositesb.2019.107091
|
[35] |
J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
|
[36] |
S. Cao, G.L. Xue, E. Yilmaz, and Z.Y. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ., 35(2021), No. 5, p. 319. doi: 10.1080/17480930.2020.1826092
|
[37] |
H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
|
[38] |
K. Zhao, M. Huang, Y. Zhou, et al., Synergistic deformation in a combination of cemented paste backfill and rocks, Constr. Build. Mater., 317(2022), art. No. 125943. doi: 10.1016/j.conbuildmat.2021.125943
|
[39] |
Z.Q. Yu, N. Qin, S. Huang, J.G. Li, and Y.Y. Wang, Performance characteristics of cemented tailings containing crumb rubber as a filling material, Adv. Mater. Sci. Eng., 2022(2022), art. No. 3117806. doi: 10.1155/2022/3117806
|
[40] |
S. Cao, D. Zheng, E. Yilmaz, et al., Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects, Constr. Build. Mater., 256(2020), art. No. 119408. doi: 10.1016/j.conbuildmat.2020.119408
|
[41] |
Y.H. Niu, H.Y. Cheng, S.C. Wu, J.L. Sun, and J.X. Wang, Rheological properties of cemented paste backfill and the construction of a prediction model, Case Stud. Constr. Mater., 16(2022), art. No. e01140. doi: 10.1016/j.cscm.2022.e01140
|
[42] |
G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. doi: 10.1016/j.conbuildmat.2021.122417
|
[43] |
G.L. Xue, E. Yilmaz, G.R. Feng, and S. Cao, Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction, Constr. Build. Mater., 289(2021), art. No. 123163. doi: 10.1016/j.conbuildmat.2021.123163
|
[44] |
K. Fang, J.X. Yang, and Y.J. Wang, Comparison of the mode I fracture toughness of different cemented paste backfill-related structures: Effects of mixing recipe, Eng. Fract. Mech., 270(2022), art. No. 108579. doi: 10.1016/j.engfracmech.2022.108579
|
[45] |
Y.R. Wang, H.J. Lu, and J. Wu, Experimental investigation on strength and failure characteristics of cemented paste backfill–rock composite under uniaxial compression, Constr. Build. Mater., 304(2021), art. No. 124629. doi: 10.1016/j.conbuildmat.2021.124629
|
[46] |
Z.H. Wang, T.Y. Qi, G.R. Feng, et al., Electrical resistivity method to appraise static segregation of gangue-cemented paste backfill in the pipeline, Int. J. Press. Vessels Pip., 192(2021), art. No. 104385. doi: 10.1016/j.ijpvp.2021.104385
|
[47] |
B.Y. Li, J.X. Zhang, H. Yan, N. Zhou, and M. Li, Experimental investigation into the thermal conductivity of gangue-cemented paste backfill in mine application, J. Mater. Res. Technol., 16(2022), p. 1792. doi: 10.1016/j.jmrt.2021.12.123
|
[48] |
N. Zhou, J.X. Zhang, S.Y. Ouyang, et al., Feasibility study and performance optimization of sand-based cemented paste backfill materials, J. Clean. Prod., 259(2020), art. No. 120798. doi: 10.1016/j.jclepro.2020.120798
|
[49] |
B.X. Yan, W.C. Zhu, C. Hou, E. Yilmaz, and M. Saadat, Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave, Constr. Build. Mater., 249(2020), art. No. 118733. doi: 10.1016/j.conbuildmat.2020.118733
|
[50] |
J. Xin, L. Liu, L.H. Xu, et al., A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total. Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
|
[51] |
D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
|
[52] |
D. Zheng, W.D. Song, Y.Y. Tan, et al., Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
|
[53] |
C.C. Qi, H.B. Ly, L.M. Le, et al., Improved strength prediction of cemented paste backfill using a novel model based on adaptive neuro fuzzy inference system and artificial bee colony, Constr. Build. Mater., 284(2021), art. No. 122857. doi: 10.1016/j.conbuildmat.2021.122857
|
[54] |
S. Cao, G.L. Xue, E. Yilmaz, Z.Y. Yin, and F.D. Yang, Utilizing concrete pillars as an environmental mining practice in underground mines, J. Clean. Prod., 278(2021), art. No. 123433. doi: 10.1016/j.jclepro.2020.123433
|
[55] |
S. Cao, E. Yilmaz, Z.Y. Yin, et al., CT scanning of internal crack mechanism and strength behavior of cement-fiber-tailings matrix composites, Cem. Concr. Compos., 116(2021), art. No. 103865. doi: 10.1016/j.cemconcomp.2020.103865
|
[56] |
A.B. Jin, S.L. Wang, B.X. Wang, et al., Fracture mechanism of specimens with 3D pringting cross joint based on DIC technology, Rock Soil Mech., 41(2020), No. 12, p. 3862.
|
[57] |
L. Zhang, B. Song, S.K. Choi, Y.G. Yao, and Y.S. Shi, Anisotropy-inspired, simulation-guided design and 3D printing of microlattice metamaterials with tailored mechanical-transport performances, Composites Part B, 236(2022), art. No. 109837. doi: 10.1016/j.compositesb.2022.109837
|
[58] |
Z.K. Yang, P. Niksiar, and Z.X. Meng, Identifying structure-property relationships of micro-architectured porous scaffolds through 3D printing and finite element analysis, Comput. Mater. Sci., 202(2022), art. No. 110987. doi: 10.1016/j.commatsci.2021.110987
|
[59] |
N.K. Choudhry, B. Panda, and S. Kumar, In-plane energy absorption characteristics of a modified re-entrant auxetic structure fabricated via 3D printing, Composites Part B, 228(2022), art. No. 109437. doi: 10.1016/j.compositesb.2021.109437
|
[60] |
P.T. Wang, Z.J. Huan, F.H. Ren, L. Zhang, and M.F. Cai, Research on direct shear behaviour and fracture patterns of 3D-printed complex jointed rock models, Rock Soil Mech., 41(2020), p. 46.
|
[61] |
B. Salazar, P. Aghdasi, I.D. Williams, C.P. Ostertag, and H.K. Taylor, Polymer lattice-reinforcement for enhancing ductility of concrete, Mater. Des., 196(2020), art. No. 109184. doi: 10.1016/j.matdes.2020.109184
|
[62] |
J.W. Liu, H. Kanwal, C. Tang, and W.F. Hao, Study on flexural properties of 3D printed lattice-reinforced concrete structures using acoustic emission and digital image correlation, Constr. Build. Mater., 333(2022), art. No. 127418. doi: 10.1016/j.conbuildmat.2022.127418
|
[63] |
Y.H. Wang, G.Q. Zhang, H.L. Ren, G. Liu, and Y. Xiong, Fabrication strategy for joints in 3D printed continuous fiber reinforced composite lattice structures, Compos. Commun., 30(2022), art. No. 101080. doi: 10.1016/j.coco.2022.101080
|
[64] |
S.A.M. Ghannadpour, M. Mahmoudi, and K.H. Nedjad, Structural behavior of 3D-printed sandwich beams with strut-based lattice core: Experimental and numerical study, Compos. Struct., 281(2022), art. No. 115113. doi: 10.1016/j.compstruct.2021.115113
|
[65] |
J. Song, M.Q. Cao, L.M. Cai, et al., 3D printed polymeric formwork for lattice cementitious composites, J. Build. Eng., 43(2021), art. No. 103074. doi: 10.1016/j.jobe.2021.103074
|
[66] |
S.W. Qin, S. Cao, and E. Yilmaz, Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills, Constr. Build. Mater., 320(2022), art. No. 126296. doi: 10.1016/j.conbuildmat.2021.126296
|
[67] |
S.W. Qin, S. Cao, E. Yilmaz, and J.J. Li, Influence of types and shapes of 3D printed polymeric lattice on ductility performance of cementitious backfill composites, Constr. Build. Mater., 307(2021), art. No. 124973. doi: 10.1016/j.conbuildmat.2021.124973
|