留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(16)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  658
  • HTML全文浏览量:  201
  • PDF下载量:  45
  • 被引次数: 0
Jiahao Wang, Peiyuan Ni, Chao Chen, Mikael Ersson, and Ying Li, Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 844-856. https://doi.org/10.1007/s12613-022-2558-5
Cite this article as:
Jiahao Wang, Peiyuan Ni, Chao Chen, Mikael Ersson, and Ying Li, Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 844-856. https://doi.org/10.1007/s12613-022-2558-5
引用本文 PDF XML SpringerLink
研究论文

RH精炼过程气体喷吹角度对多相流动及传质的影响

  • 通讯作者:

    倪培远    E-mail: nipeiyuan@smm.neu.edu.cn

    厉英    E-mail: liying@mail.neu.edu.cn

文章亮点

  • (1) 提出并研究了旋转流驱动RH高效精炼新技术
  • (2) 系统揭示了旋转喷吹对提升循环流量和缩短混匀时间的作用机理
  • (3) 全面掌握了喷吹角度对RH高效精炼过程多相流场的影响规律
  • 当前,在我国制造业高质量发展和“双碳”战略下,钢铁工业的高端、绿色、低碳、高效率的创新发展十分关键。RH精炼具有脱碳、脱气、脱硫、去除夹杂物及调整钢水成分等冶金功能,已成为轴承钢等诸多高品质钢生产的重要工序之一。本研究工作基于提高RH上升管气泡分散度、扩大气泡与钢水相互作用范围的思路,创新性的提出了旋转喷吹新技术,通过简单改变上升管气体喷吹角度,实现上升管内钢水的旋转流动,而钢水旋转流动进一步促进气泡的弥散分布,从而充分发挥气泡对钢水的提升作用,提高上升管横截面速度分布的均匀性和RH精炼的循环流量。本文首先开展了传统喷吹条件下的数值模拟和水模型实验研究,结果表明,气体流量为40 L·min-1时,数值模型预测的混匀时间与水模型实验测得的结果吻合较好,在选定的三个监测点位置,模型预测值与水模型实测值的误差在1.3%~7.3%范围内,证明了数值模型的可靠性;其次,开展了不同气体喷吹角度对RH精炼过程多相流动及传质行为的影响,研究表明,传统喷吹角度下的循环流量为9 kg·s-1,当喷嘴水平旋转30°或45°时,循环流量提高了约15%,此外,预测的三个监测点的混匀时间分别缩短了约21.3%、28.2%和12.3%。喷吹角度为30°和45°时,对128个气泡的统计分析表明,气泡在流体中的平均停留时间增加了约33.3%。研究表明,新的喷吹技术有利于提升RH循环流量和混匀时间,有望为进一步提升RH精炼效率提供了重要解决思路。
  • Research Article

    Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process

    + Author Affiliations
    • A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow, circulation flow rate, and mixing time during Ruhrstahl-Heraeus (RH) refining process. Also, a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up, and measurements were carried out to validate the mathematical model. The results show that, with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min–1, the mixing time predicted by the mathematical model agrees well with the measured values. The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations, where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value. In addition, the circulation flow rate was 9 kg·s–1. When the gas blowing nozzle was horizontally rotated by either 30° or 45°, the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle, due to the rotational flow formed in the up-snorkel. Furthermore, the mixing time at the monitoring point 1, 2, and 3 was shortened by around 21.3%, 28.2%, and 12.3%, respectively. With the nozzle angle of 30° and 45°, the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
    • loading
    • [1]
      K. Nakanishi, J. Szekely, and C.W. Chang, Experimental and theoretical investigation of mixing phenomena in the RH-vacuum process, Ironmaking Steelmaking, 2(1975), No. 2, p. 115.
      [2]
      K. Shirabe and J. Szekely, A mathematical model of fluid flow and inclusion coalescence in the RH vacuum degassing system, ISIJ Int., 23(1983), No. 6, p. 465. doi: 10.2355/isijinternational1966.23.465
      [3]
      R. Tsujino, J. Nakashima, M. Hirai, and I. Sawada, Numerical analysis of molten steel flow in ladle of RH process, ISIJ Int., 29(1989), No. 7, p. 589. doi: 10.2355/isijinternational.29.589
      [4]
      Y. Kato, H. Nakato, T. Fujii, S. Ohmiya, and S. Takatori, Fluid flow in ladle and its effect on decarburization rate in RH degasser, ISIJ Int., 33(1993), No. 10, p. 1088. doi: 10.2355/isijinternational.33.1088
      [5]
      F. Ahrenhold and W. Pluschkell, Mixing phenomena inside the ladle during RH decarburization of steel melts, Steel Res., 70(1999), No. 8-9, p. 314. doi: 10.1002/srin.199905646
      [6]
      S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu, Mixing evaluation in the RH process using mathematical modelling, ISIJ Int., 44(2004), No. 1, p. 82. doi: 10.2355/isijinternational.44.82
      [7]
      P.A. Kishan and S.K. Dash, Prediction of circulation flow rate in the RH degasser using discrete phase particle modeling, ISIJ Int., 49(2009), No. 4, p. 495. doi: 10.2355/isijinternational.49.495
      [8]
      J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Mathematical model of the flow, Steel Res. Int., 77(2006), No. 1, p. 32. doi: 10.1002/srin.200606127
      [9]
      J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow process in a whole RH degasser during the vacuum circulation refining process: Application of the model and results, Steel Res. Int., 77(2006), No. 2, p. 91. doi: 10.1002/srin.200606359
      [10]
      H.T. Ling, F. Li, L.F. Zhang, and A.N. Conejo, Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+DPM model, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1950. doi: 10.1007/s11663-016-0669-y
      [11]
      G.J. Chen, S.P. He, and Y.G. Li, Investigation of the air-argon-steel-slag flow in an industrial RH reactor with VOF–DPM coupled model, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2176. doi: 10.1007/s11663-017-0992-y
      [12]
      B. Wang, B.H. Zhu, and B. Zhang, Numerical simulation of gas–steel–slag multiphase flow in the vacuum chamber of the RH degasser, JOM, 73(2021), No. 10, p. 2920. doi: 10.1007/s11837-021-04816-6
      [13]
      G.J. Chen and S.P. He, Hydrodynamic modeling of two-phase flow in the industrial Ruhrstahl-Heraeus degasser: Effect of bubble expansion models, Metall. Mater. Trans. B, 53(2022), No. 1, p. 208. doi: 10.1007/s11663-021-02357-6
      [14]
      P. Shao, S. Liu, and X. Miao, CFD–PBM simulation of bubble coalescence and breakup in top blown-rotary agitated reactor, J. Iron Steel Res. Int., 29(2022), No. 2, p. 223. doi: 10.1007/s42243-021-00636-9
      [15]
      Y.G. Park, K.W. Yi, and S.B. Ahn, The effect of operating parameters and dimensions of the RH system on melt circulation using numerical calculations, ISIJ Int., 41(2001), No. 5, p. 403. doi: 10.2355/isijinternational.41.403
      [16]
      R.K. Hanna, T. Jones, R. Blake, and M. Millman, Water modelling to aid improvement of degasser performance for production of ultralow carbon interstitial free steels, Ironmaking Steelmaking, 21(1994), p. 37.
      [17]
      C.W. Li, G.G. Cheng, X.H. Wang, G.S. Zhu, and A.M. Cui, Mathematical model of RH blow argon mode affecting: Decarburization rate in ultra-low carbon steel refining, J. Iron Steel Res. Int., 19(2012), No. 5, p. 23. doi: 10.1016/S1006-706X(12)60095-8
      [18]
      L.C. Trindade, J.J.M. Peixoto, C.A. Silva, et al., Influence of obstruction at gas-injection nozzles (number and position) in RH degasser process, Metall. Mater. Trans. B, 50(2019), No. 1, p. 578. doi: 10.1007/s11663-018-1474-6
      [19]
      D. Mukherjee, A.K. Shukla, and D.G. Senk, Cold model-based investigations to study the effects of operational and nonoperational parameters on the Ruhrstahl-Heraeus degassing process, Metall. Mater. Trans. B, 48(2017), No. 2, p. 763. doi: 10.1007/s11663-016-0877-5
      [20]
      J.H. Wei and H.T. Hu, Mathematical modelling of molten steel flow in a whole degasser during RH refining process, Ironmaking Steelmaking, 32(2005), No. 5, p. 427. doi: 10.1179/174328105X48133
      [21]
      X.G. Ai, Y.P. Bao, W. Jiang, J.H. Liu, P.H. Li, and T.Q. Li, Periodic flow characteristics during RH vacuum circulation refining, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 17. doi: 10.1007/s12613-010-0103-4
      [22]
      V. Seshadri and S.L.D.S. Costa, Cold model studies of RH degassing process, ISIJ Int., 26(1986), No. 2, p. 133. doi: 10.2355/isijinternational1966.26.133
      [23]
      Y.H. Li, Y.P. Bao, R. Wang, L.F. Ma, and J.S. Liu, Modeling study on the flow patterns of gas–liquid flow for fast decarburization during the RH process, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 153. doi: 10.1007/s12613-018-1558-y
      [24]
      L. Lin, Y.P. Bao, F. Yue, L.Q. Zhang, and H.L. Ou, Physical model of fluid flow characteristics in RH–TOP vacuum refining process, Int. J. Miner. Metall. Mater., 19(2012), No. 6, p. 483. doi: 10.1007/s12613-012-0584-4
      [25]
      Q. Wang, S.Y. Jia, F.S. Qi, et al., A CFD study on refractory wear in RH degassing process, ISIJ Int., 60(2020), No. 9, p. 1938. doi: 10.2355/isijinternational.ISIJINT-2019-768
      [26]
      B. Li and F. Tsukihashi, Modeling of circulation flow in RH degassing vessel water designed for two- and multi-legs operations, ISIJ Int., 40(2000), No. 12, p. 1203. doi: 10.2355/isijinternational.40.1203
      [27]
      F. Obata, R. Waka, K. Uehara, K. Ito, and Y. Kawata, Circulation characteristics of RH degassing vessel water model with multi-legs, Tetsu-to-Hagane, 86(2000), No. 4, p. 225. doi: 10.2355/tetsutohagane1955.86.4_225
      [28]
      H. Ling, L. Zhang, and C. Liu, Effect of snorkel shape on the fluid flow during RH degassing process: Mathematical modelling, Ironmaking Steelmaking, 45(2018), No. 2, p. 145. doi: 10.1080/03019233.2016.1248700
      [29]
      T. Kuwabara, K. Umezawa, K.J. Mori, and H. Watanabe, Investigation of decarburization behavior in RH-reactor and its operation improvement, ISIJ Int., 28(1988), No. 4, p. 305. doi: 10.2355/isijinternational1966.28.305
      [30]
      Z.F. Ren, Z.G. Luo, F.X. Meng, et al., Physical simulation on molten steel flow characteristics of RH vacuum chamber with arched snorkels, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6525096. doi: 10.1155/2020/6525096
      [31]
      G.J. Chen and S.P. He, Mixing behavior in the RH degasser with bottom gas injection, Vacuum, 130(2016), p. 48. doi: 10.1016/j.vacuum.2016.04.028
      [32]
      R.D. Wang, Y. Jin, and H. Cui, The flow behavior of molten steel in an RH degasser under different ladle bottom stirring processes, Metall. Mater. Trans. B, 53(2022), No. 1, p. 342. doi: 10.1007/s11663-021-02371-8
      [33]
      D.Q. Geng, H. Lei, and J.C. He, Simulation on flow field and mixing phenomenon in RH degasser with ladle bottom blowing, Ironmaking Steelmaking, 39(2012), No. 6, p. 431. doi: 10.1179/1743281211Y.0000000090
      [34]
      D.Q. Geng, J.X. Zheng, K. Wang, et al., Simulation on decarburization and inclusion removal process in the Ruhrstahl-Heraeus (RH) process with ladle bottom blowing, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1484. doi: 10.1007/s11663-015-0314-1
      [35]
      S.P. He, G.J. Chen, and C.J. Guo, Investigation of mixing and slag layer behaviours in the RH degasser with bottom gas injection by using the VOF–DPM coupled model, Ironmaking Steelmaking, 46(2019), No. 8, p. 771. doi: 10.1080/03019233.2017.1410948
      [36]
      J.F. Dong, C. Feng, R. Zhu, G.S. Wei, J.J. Jiang, and S.Z. Chen, Simulation and application of Ruhrstahl-Heraeus (RH) reactor with bottom-blowing, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2127. doi: 10.1007/s11663-021-02174-x
      [37]
      B. Li, Y. Luan, F. Qi, and H. Huo, Experimental investigation on circulation flow in RH refining system with swirling flow, J. Northeast Univ., 26(2005), No. 8, p. 726.
      [38]
      B.K. Li and F. Tsukihashi, Effect of rotating magnetic field on two-phase flow in RH vacuum degassing vessel, ISIJ Int., 45(2005), No. 7, p. 972. doi: 10.2355/isijinternational.45.972
      [39]
      D.Q. Geng, H. Lei, and J.C. He, Effect of traveling magnetic field on flow, mixing, decarburization and inclusion removal during RH refining process, ISIJ Int., 52(2012), No. 6, p. 1036. doi: 10.2355/isijinternational.52.1036
      [40]
      F.S. Qi, B.K. Li, and F. Tsukihashi, Behaviour of argon gas bubbles in an electromagnetic driven swirling flow, Steel Res. Int., 78(2007), No. 5, p. 409. doi: 10.1002/srin.200705912
      [41]
      L.Y. Wang, Z.Y. Liu, M. He, et al., Flow fields control for bubble refinement induced by electromagnetic fields, J. Iron Steel Res. Int., 29(2022), No. 4, p. 575. doi: 10.1007/s42243-021-00627-w
      [42]
      W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd eds., CRC Press, Florida, 2012, p. 5.
      [43]
      J. Han, X.D. Wang, and D.C. Ba, Coordinated analysis of multiple factors of argon blowing parameters on the effect of circulation flow rate in RH vacuum refining process, Vacuum, 109(2014), p. 68. doi: 10.1016/j.vacuum.2014.05.007
      [44]
      COMSOL, CFD Module User’s Guide, Release 5.3, SWE, 2017, p. 44.
      [45]
      B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, New York, 1972.
      [46]
      COMSOL, Particle Tracing Module User’s Guide, Release 5.6, SWE, 2020, p. 267.
      [47]
      Y. Luo, C. Liu, Y. Ren, and L.F. Zhang, Modeling on the fluid flow and mixing phenomena in a RH steel degasser with oval down-leg snorkel, Steel Res. Int., 89(2018), No. 12, art. No. 1800048. doi: 10.1002/srin.201800048
      [48]
      L. Schiller and Z.A. Naumann, A drag coefficient correlation, Zeitschrift Des Vereins Deutscher Ingenieure, 77(1935), p. 318.
      [49]
      M. Sano and K. Mori, Dynamics of bubble swarms in liquid metals, Trans. Iron Steel Inst. Jpn, 20(1980), No. 10, p. 668. doi: 10.2355/isijinternational1966.20.668
      [50]
      A. Ghaffari and A. Rahbar-Kelishami, MD simulation and evaluation of the self-diffusion coefficients in aqueous NaCl solutions at different temperatures and concentrations, J. Mol. Liq., 187(2013), p. 238. doi: 10.1016/j.molliq.2013.08.004

    Catalog


    • /

      返回文章
      返回