留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(9)

数据统计

分享

计量
  • 文章访问数:  939
  • HTML全文浏览量:  264
  • PDF下载量:  62
  • 被引次数: 0
Fang Xu, Wanning Cao, Jinzhou Li, Songsong Zhi, Zhiyong Gao, Yuqin Jiang, Wei Li, Kai Jiang,  and Dapeng Wu, TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 630-641. https://doi.org/10.1007/s12613-022-2559-4
Cite this article as:
Fang Xu, Wanning Cao, Jinzhou Li, Songsong Zhi, Zhiyong Gao, Yuqin Jiang, Wei Li, Kai Jiang,  and Dapeng Wu, TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 630-641. https://doi.org/10.1007/s12613-022-2559-4
引用本文 PDF XML SpringerLink
研究论文

通过部分刻蚀策略制备具有增强载流子转移的TiO2@NH2-MIL-125(Ti)复合材料用于光催化还原Cr(VI)

  • 通讯作者:

    姜玉钦    E-mail: jiangyuqin@htu.cn

    武大鹏    E-mail: dapengwu@htu.edu.cn

文章亮点

  • (1) 通过蒸馏水原位部分刻蚀法制备TiO2@NH2-MIL-125(Ti)纳米复合材料。
  • (2) 与原始NH2-MIL-125(Ti)和NH2-MIL-125(Ti)完全衍生的TiO2相比,TiO2@NH2-MIL-125(Ti)纳米复合材料具有更好的还原Cr(VI)性能。
  • (3) TiO2和NH2-MIL-125(Ti)之间的紧密界面有利于载流子的转移和分离。
  • 金属-有机骨架(MOFs)材料具有孔隙率高、比表面积大、晶体高度有序、结构和功能可调控等独特优势,但是由于单一MOF材料导电性差、电子-空穴复合快等缺点,严重限制了光催化性能。因此,利用MOF基复合材料在两组分间的协同作用以获得增强的光催化性能引起了研究者的广泛关注。本文采用蒸馏水原位刻蚀法制备了具有不饱和钛-氧簇、介孔结构和紧密界面的TiO2@NH2-MIL-125(Ti)纳米复合材料。X射线光电子能谱表明TiO2和NH2-MIL-125(Ti)之间具有很强的电子相互作用,证实了TiO2@NH2-MIL-125(Ti)纳米复合材料的形成。光电化学测试和热力学测试表明TiO2@NH2-MIL-125(Ti)纳米复合材料提高了异质结界面载流子的电荷分离效率,降低了载流子的转移阻力,这有利于光激发电子的转移和Cr(VI)的还原。因此,与原始NH2-MIL-125(Ti)和NH2-MIL-125(Ti)完全衍生的TiO2相比,最优的TiO2@NH2-MIL-125(Ti)纳米复合材料(MT-2)表现出良好的光催化还原Cr(VI)性能。基于自由基捕获实验和电子顺磁共振波谱测试结果,推测了TiO2@NH2-MIL-125(Ti)纳米复合材料增强光催化活性的II型机理。
  • Research Article

    TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction

    + Author Affiliations
    • Metal-organic frameworks (MOFs)-based composites have been widely applied as photocatalysts because of their synergistic effect between the two individual component. Herein, TiO2@NH2-MIL-125(Ti) nanocomposites which possess unsaturated titanium–oxo clusters, mesoporous structure, and intimate interface were successfully constructed via an in-situ distilled water-etched route. The X-ray photoelectron spectroscopy (XPS) measurements indicated strong electronic interaction between TiO2 and NH2-MIL-125(Ti), confirming the formation of TiO2@NH2-MIL-125(Ti) nanocomposite. Photoelectrochemical and thermodynamics measurements showed that TiO2@NH2-MIL-125(Ti) nanocomposites have improved charge separation efficient and decreased transfer resistance of the carriers within the heterojunction interfaces, which facilitates the photoexcited electrons transfer and reduction of the Cr(VI) species. Therefore, the optimal TiO2@NH2-MIL-125(Ti) nanocomposite demonstrated superior performance compared to NH2-MIL-125(Ti) and NH2-MIL-125(Ti) derived TiO2. Based on the free radical trapping experiment and electron paramagnetic resonance (EPR) measurements, a possible type-II scheme was proposed for the enhanced photocatalytic activity over the TiO2@NH2-MIL-125(Ti) nanocomposite.
    • loading
    • Supplementary Information-s12613-022-2559-4.doc
    • [1]
      Y.X. Li, H. Fu, P. Wang, C. Zhao, W. Liu, and C.C. Wang, Porous tube-like ZnS derived from rod-like ZIF-L for photocatalytic Cr(VI) reduction and organic pollutants degradation, Environ. Pollut., 256(2020), art. No. 113417. doi: 10.1016/j.envpol.2019.113417
      [2]
      J. Geng, F. Gu, and J.M. Chang, Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(VI) and Rhodamine B from wastewater, J. Hazard. Mater., 375(2019), p. 174. doi: 10.1016/j.jhazmat.2019.04.086
      [3]
      W.J. Jiang, M. Pelaez, D.D. Dionysiou, M.H. Entezari, D. Tsoutsou, and K. O’Shea, Chromium(VI) removal by maghemite nanoparticles, Chem. Eng. J., 222(2013), p. 527. doi: 10.1016/j.cej.2013.02.049
      [4]
      C.E. Barrera-Díaz, V. Lugo-Lugo, and B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction, J. Hazard. Mater., 223-224(2012), p. 1. doi: 10.1016/j.jhazmat.2012.04.054
      [5]
      S. Jamshidifard, S. Koushkbaghi, S. Hosseini, et al., Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions, J. Hazard. Mater., 368(2019), p. 10. doi: 10.1016/j.jhazmat.2019.01.024
      [6]
      S. Wu, X.B. He, L.J. Wang, and K.C. Chou, High Cr(VI) adsorption capacity of rutile titania prepared by hydrolysis of TiCl4 with AlCl3 addition, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1157. doi: 10.1007/s12613-020-1965-8
      [7]
      F. Chen, Q. Yang, Y.L. Wang, et al., Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism, Chem. Eng. J., 348(2018), p. 157. doi: 10.1016/j.cej.2018.04.170
      [8]
      J.H. Qiu, X.F. Zhang, X.G. Zhang, et al., Constructing Cd0.5Zn0.5S@ZIF-8 nanocomposites through self-assembly strategy to enhance Cr(VI) photocatalytic reduction, J. Hazard. Mater., 349(2018), p. 234. doi: 10.1016/j.jhazmat.2018.02.009
      [9]
      Z.P. Cheng, Q. Dong, S. Chen, et al., Novel AgClxBr1−x solid solutions photocatalyst with enhanced photocatalytic activity for reduction of Cr6+ and oxidation of Bisphenol A under simulated sunlight, Mater. Res. Bull., 139(2021), art. No. 111257. doi: 10.1016/j.materresbull.2021.111257
      [10]
      F. Xu, H.M. Chen, C.Y. Xu, et al., Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr(VI), J. Colloid Interface Sci., 525(2018), p. 97. doi: 10.1016/j.jcis.2018.04.057
      [11]
      H. Furukawa, K.E. Cordova, M. O'Keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444. doi: 10.1126/science.1230444
      [12]
      M.A. Syzgantseva, C.P. Ireland, F.M. Ebrahim, B. Smit, and O.A. Syzgantseva, Metal substitution as the method of modifying electronic structure of metal-organic frameworks, J. Am. Chem. Soc., 141(2019), No. 15, p. 6271. doi: 10.1021/jacs.8b13667
      [13]
      T. Zhang and W.B. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43(2014), No. 16, p. 5982. doi: 10.1039/C4CS00103F
      [14]
      M.A. Nasalevich, M. van der Veen, F. Kapteijn, and J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges, CrystEngComm, 16(2014), No. 23, p. 4919. doi: 10.1039/C4CE00032C
      [15]
      S. Naghdi, A. Cherevan, A. Giesriegl, et al., Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis, Nat. Commun., 13(2022), art. No. 282. doi: 10.1038/s41467-021-27775-7
      [16]
      A. Corma, H. García, and F.X.L. i Xamena, Engineering metal organic frameworks for heterogeneous catalysis, Chem. Rev., 110(2010), No. 8, p. 4606. doi: 10.1021/cr9003924
      [17]
      H.Q. Xu, J.H. Hu, D.K. Wang, et al., Visible-light photoreduction of CO2 in a metal-organic framework: Boosting electron–hole separation via electron trap states, J. Am. Chem. Soc., 137(2015), No. 42, p. 13440. doi: 10.1021/jacs.5b08773
      [18]
      X.L. Chen, S.N. Xiao, H. Wang, et al., MOFs conferred with transient metal centers for enhanced photocatalytic activity, Angew. Chem. Int. Ed., 59(2020), No. 39, p. 17182. doi: 10.1002/anie.202002375
      [19]
      X. Wang, X.L. Zhang, W. Zhou, L.Q. Liu, J.H. Ye, and D.F. Wang, An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light, Nano Energy, 62(2019), p. 250. doi: 10.1016/j.nanoen.2019.05.023
      [20]
      J. Wang, A.S. Cherevan, C. Hannecart, et al., Ti-based MOFs: New insights on the impact of ligand composition and hole scavengers on stability, charge separation and photocatalytic hydrogen evolution, Appl. Catal. B, 283(2021), art. No. 119626. doi: 10.1016/j.apcatb.2020.119626
      [21]
      S.H. Wu, X.F. Xing, D. Wang, et al., Highly ordered hierarchically macroporous MIL-125 with high specific surface area for photocatalytic CO2 fixation, ACS Sustainable Chem. Eng., 8(2020), No. 1, p. 148. doi: 10.1021/acssuschemeng.9b04829
      [22]
      Y.X. Li, C.C. Wang, H.F. Fu, and P. Wang, Marigold-flower-like TiO2/MIL-125 core–shell composite for enhanced photocatalytic Cr(VI) reduction, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105451. doi: 10.1016/j.jece.2021.105451
      [23]
      L. Li, X.S. Wang, T.F. Liu, and J.H. Ye, Titanium-based MOF materials: From crystal engineering to photocatalysis, Small Methods, 4(2020), No. 12, art. No. 2000486. doi: 10.1002/smtd.202000486
      [24]
      G. Wen and Z.G. Guo, Facile modification of NH2-MIL-125(Ti) to enhance water stability for efficient adsorptive removal of crystal violet from aqueous solution, Colloids Surf. A, 541(2018), p. 58. doi: 10.1016/j.colsurfa.2018.01.011
      [25]
      S. Hu, M. Liu, K.Y. Li, et al., Solvothermal synthesis of NH2-MIL-125(Ti) from circular plate to octahedron, CrystEngComm, 16(2014), No. 41, p. 9645. doi: 10.1039/C4CE01545B
      [26]
      F. Guo, J.H. Guo, P. Wang, et al., Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti), Chem. Sci., 10(2019), No. 18, p. 4834. doi: 10.1039/C8SC05060K
      [27]
      G. Capano, F. Ambrosio, S. Kampouri, K.C. Stylianou, A. Pasquarello, and B. Smit, On the electronic and optical properties of metal-organic frameworks: Case study of MIL-125 and MIL-125-NH2, J. Phys. Chem. C, 124(2020), No. 7, p. 4065. doi: 10.1021/acs.jpcc.9b09453
      [28]
      X.M. Cheng, X.Y. Dao, S.Q. Wang, J. Zhao, and W.Y. Sun, Enhanced photocatalytic CO2 reduction activity over NH2-MIL-125(Ti) by facet regulation, ACS Catal., 11(2021), No. 2, p. 650. doi: 10.1021/acscatal.0c04426
      [29]
      S. Gao, W.L. Cen, Q. Li, et al., A mild one-step method for enhancing optical absorption of amine-functionalized metal-organic frameworks, Appl. Catal. B, 227(2018), p. 190. doi: 10.1016/j.apcatb.2018.01.007
      [30]
      F. Mohammadnezhad, S. Kampouri, S.K. Wolff, et al., Tuning the optoelectronic properties of hybrid functionalized MIL-125-NH2 for photocatalytic hydrogen evolution, ACS Appl. Mater. Interfaces, 13(2021), No. 4, p. 5044. doi: 10.1021/acsami.0c19345
      [31]
      S. Kampouri, T.N. Nguyen, M. Spodaryk, et al., Concurrent photocatalytic hydrogen generation and dye degradation using MIL-125-NH2 under visible light irradiation, Adv. Funct. Mater., 28(2018), No. 52, art. No. 1806368. doi: 10.1002/adfm.201806368
      [32]
      Y.W. Sun, Y. Liu, J. Caro, X.W. Guo, C.S. Song, and Y. Liu, In-plane epitaxial growth of highly c-oriented NH2-MIL-125(Ti) membranes with superior H2/CO2 selectivity, Angew. Chem. Int. Ed., 57(2018), No. 49, p. 16088. doi: 10.1002/anie.201810088
      [33]
      J.H. Qiu, M. Li, H.T. Wang, and J.F. Yao, Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants, Chemosphere, 242(2020), art. No. 125197. doi: 10.1016/j.chemosphere.2019.125197
      [34]
      V. Muelas-Ramos, C. Belver, J.J. Rodriguez, and J. Bedia, Synthesis of noble metal-decorated NH2-MIL-125 titanium MOF for the photocatalytic degradation of acetaminophen under solar irradiation, Sep. Purif. Technol., 272(2021), art. No. 118896. doi: 10.1016/j.seppur.2021.118896
      [35]
      Y.C. Zhou, P. Wang, H.F. Fu, C. Zhao, and C.C. Wang, Ternary Ag/Ag3PO4/MIL-125-NH2 Z-scheme heterojunction for boosted photocatalytic Cr(VI) cleanup under visible light, Chin. Chem. Lett., 31(2020), No. 10, p. 2645. doi: 10.1016/j.cclet.2020.02.048
      [36]
      S.Y. Zhang, M. Du, Z.P. Xing, Z.Z. Li, K. Pan, and W. Zhou, Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance, Appl. Catal. B, 262(2020), art. No. 118202. doi: 10.1016/j.apcatb.2019.118202
      [37]
      H. Wang, Q. Zhang, J.J. Li, et al., The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance, J. Colloid Interface Sci., 606(2022), p. 1745. doi: 10.1016/j.jcis.2021.08.135
      [38]
      J. Chen, M.G. Wang, J. Han, and R. Guo, TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p-n heterojunctions towards efficient photocatalysis, J. Colloid Interface Sci., 562(2020), p. 313. doi: 10.1016/j.jcis.2019.12.031
      [39]
      G.Q. Zhang, X. Yang, C.X. He, P.X. Zhang, and H.W. Mi, Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation, J. Mater. Chem. A, 8(2020), No. 1, p. 334. doi: 10.1039/C9TA10471B
      [40]
      X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, and L.S. Zheng, Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties, J. Am. Chem. Soc., 131(2009), No. 9, p. 3152. doi: 10.1021/ja8092373
      [41]
      J.F. Chen, X.D. Zhang, F.K. Bi, X.L. Zhang, Y. Yang, and Y.X. Wang, A facile synthesis for uniform tablet-like TiO2/C derived from Materials of Institut Lavoisier-125(Ti) (MIL-125(Ti)) and their enhanced visible light-driven photodegradation of tetracycline, J. Colloid Interface Sci., 571(2020), p. 275. doi: 10.1016/j.jcis.2020.03.055
      [42]
      L.F. Liu, F.Y. Zhang, J.L. Zhang, et al., Interfacial assembly and hydrolysis for synthesizing a TiO2/metal-organic framework composite, Soft Matter, 13(2017), No. 48, p. 9174. doi: 10.1039/C7SM02007D
      [43]
      Y. Zhang, Z.Y. Zhao, J.R. Chen, et al., C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity, Appl. Catal. B, 165(2015), p. 715. doi: 10.1016/j.apcatb.2014.10.063
      [44]
      H. Lee, H.S. Jang, N.Y. Kim, and J.B. Joo, Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions, J. Ind. Eng. Chem., 99(2021), p. 352. doi: 10.1016/j.jiec.2021.04.045
      [45]
      Q.Q. Liu, J.X. Huang, H. Tang, X.H. Yu, and J. Shen, Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity, J. Mater. Sci. Technol., 56(2020), p. 196. doi: 10.1016/j.jmst.2020.04.026
      [46]
      L.L. Wang, G.G. Tang, S. Liu, et al., Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J., 428(2022), art. No. 131338. doi: 10.1016/j.cej.2021.131338
      [47]
      J. Shen, R. Wang, Q.Q. Liu, X.F. Yang, H. Tang, and J. Yang, Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2, Chin. J. Catal., 40(2019), No. 3, p. 380. doi: 10.1016/S1872-2067(18)63166-3
      [48]
      X.Y. Li, Y.H. Pi, Q.Q. Hou, et al., Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity, Chem. Commun., 54(2018), No. 15, p. 1917. doi: 10.1039/C7CC09072B
      [49]
      J.M. Hu, J. Ding, and Q. Zhong, In situ fabrication of amorphous TiO2/NH2-MIL-125(Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation, J. Colloid Interface Sci., 560(2020), p. 857. doi: 10.1016/j.jcis.2019.11.003
      [50]
      B.X. Zhang, J.L. Zhang, X.N. Tan, et al., MIL-125-NH2@TiO2 core–shell particles produced by a post-solvothermal route for high-performance photocatalytic H2 production, ACS Appl. Mater. Interfaces, 10(2018), No. 19, p. 16418. doi: 10.1021/acsami.8b01462
      [51]
      R. Bibi, H.L. Huang, M. Kalulu, et al., Synthesis of amino-functionalized Ti-MOF derived yolk-shell and hollow heterostructures for enhanced photocatalytic hydrogen production under visible light, ACS Sustainable Chem. Eng., 7(2019), No. 5, p. 4868. doi: 10.1021/acssuschemeng.8b05352
      [52]
      M. Zhang, J.N. Chang, Y.F. Chen, et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core–shell to yolk-shell and hollow-sphere structure for artificial photosynthesis, Adv. Mater., 33(2021), No. 48, art. No. 2105002. doi: 10.1002/adma.202105002
      [53]
      L.M. Sun, Y.S. Yuan, F. Wang, Y.L. Zhao, W.W. Zhan, and X.G. Han, Selective wet-chemical etching to create TiO2@MOF frame heterostructure for efficient photocatalytic hydrogen evolution, Nano Energy, 74(2020), p. 104909. doi: 10.1016/j.nanoen.2020.104909
      [54]
      X.M. Cheng, Y.M. Gu, X.Y. Zhang, et al., Crystallographic facet heterojunction of MIL-125-NH2(Ti) for carbon dioxide photoreduction, Appl. Catal. B, 298(2021), art. No. 120524. doi: 10.1016/j.apcatb.2021.120524
      [55]
      M.A. Nasalevich, M.G. Goesten, T.J. Savenije, F. Kapteijn, and J. Gascon, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49(2013), No. 90, p. 10575. doi: 10.1039/C3CC46398B
      [56]
      J.G. Yu, J.X. Low, W. Xiao, P. Zhou, and M. Jaroniec, Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets, J. Am. Chem. Soc., 136(2014), No. 25, p. 8839. doi: 10.1021/ja5044787
      [57]
      D.L. Dai, J.H. Qiu, L. Zhang, H. Ma, and J.F. Yao, Amino-functionalized Ti-metal-organic framework decorated BiOI sphere for simultaneous elimination of Cr(VI) and tetracycline, J. Colloid Interface Sci., 607(2022), p. 933. doi: 10.1016/j.jcis.2021.09.084
      [58]
      Z.Q. He, J.T. Tang, J. Shen, J.M. Chen, and S. Song, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364(2016), p. 416. doi: 10.1016/j.apsusc.2015.12.163
      [59]
      P. Karthik, E. Balaraman, and B. Neppolian, Efficient solar light-driven H2 production: Post-synthetic encapsulation of a Cu2O co-catalyst in a metal-organic framework (MOF) for boosting the effective charge carrier separation, Catal. Sci. Technol., 8(2018), No. 13, p. 3286. doi: 10.1039/C8CY00604K
      [60]
      X.S. Wang, C.H. Chen, F. Ichihara, et al., Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction, Appl. Catal. B, 253(2019), p. 323. doi: 10.1016/j.apcatb.2019.04.074
      [61]
      Y.J. Fu, K.J. Zhang, Y. Zhang, Y.Q. Cong, and Q. Wang, Fabrication of visible-light-active MR/NH2-MIL-125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412(2021), art. No. 128722. doi: 10.1016/j.cej.2021.128722
      [62]
      V. Chevalier, J. Martin, D. Peralta, A. Roussey, and F. Tardif, Performance of HKUST-1 metal-organic framework for a VOCs mixture adsorption at realistic concentrations ranging from 0.5 to 2.5 ppmv under different humidity conditions, J. Environ. Chem. Eng., 7(2019), No. 3, art. No. 103131. doi: 10.1016/j.jece.2019.103131
      [63]
      A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, and K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm), J. Am. Chem. Soc., 124(2002), No. 45, p. 13547. doi: 10.1021/ja0269643
      [64]
      S. Wu, H.T. Yu, S. Chen, and X. Quan, Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering, ACS Catal., 10(2020), No. 24, p. 14380. doi: 10.1021/acscatal.0c03359
      [65]
      W.C. Cui, J.P. Shang, H.Y. Bai, et al.,In-situ implantation of plasmonic Ag into metal-organic frameworks for constructing efficient Ag/NH2-MIL-125/TiO2 photoanode, Chem. Eng. J., 388(2020), art. No. 124206. doi: 10.1016/j.cej.2020.124206

    Catalog


    • /

      返回文章
      返回