Cite this article as: |
Yafei Hu, Shenghua Yin, Keqing Li, Bo Zhang, and Bin Han, Comprehensive utilization of solid waste resources: Development of wet shotcrete for mines, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1692-1704. https://doi.org/10.1007/s12613-022-2563-8 |
韩斌 E-mail: bin.han@ustb.edu.cn
Supplementary Information-10.1007s12613-022-2563-8.docx |
[1] |
Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608. doi: 10.1016/j.jenvman.2021.112608
|
[2] |
W. Sun, D. Wu, H. Liu, and C. Qu, Thermal, mechanical and ultrasonic properties of cemented tailings backfill subjected to microwave radiation, Constr. Build. Mater., 313(2021), art. No. 125535. doi: 10.1016/j.conbuildmat.2021.125535
|
[3] |
Q. Chen, Y. Tao, Q. Zhang, and C. Qi, The rheological, mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide, Chemosphere, 286(2022), art. No. 131630. doi: 10.1016/j.chemosphere.2021.131630
|
[4] |
Y.F. Hu, K.Q. Li, B. Zhang, and B. Han, Strength investigation of the cemented paste backfill in alpine regions using lab experiments and machine learning, Constr. Build. Mater., 323(2022), art. No. 126583. doi: 10.1016/j.conbuildmat.2022.126583
|
[5] |
H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1715. doi: 10.1007/s12613-021-2366-3
|
[6] |
C. Qi, Q. Chen, X. Dong, Q. Zhang, and Z.M. Yaseen, Pressure drops of fresh cemented paste backfills through coupled test loop experiments and machine learning techniques, Powder Technol., 361(2020), p. 748. doi: 10.1016/j.powtec.2019.11.046
|
[7] |
A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[8] |
X. Wei, W. Ni, S. Zhang, X. Wang, J. Li, and H. Du, Influence of the key factors on the performance of steel slag–desulphurisation gypsum-based hydration–carbonation materials, J. Build. Eng., 45(2022), art. No. 103591. doi: 10.1016/j.jobe.2021.103591
|
[9] |
S.H. Yin, L.M. Wang, X. Chen, and A.X. Wu, Agglomeration and leaching behaviors of copper oxides with different chemical binders, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1127. doi: 10.1007/s12613-020-2081-5
|
[10] |
C. Xu, W. Ni, K. Li, S. Zhang, Y. Li, and D. Xu, Hydration mechanism and orthogonal optimisation of mix proportion for steel slag–slag-based clinker-free prefabricated concrete, Constr. Build. Mater., 228(2019), art. No. 117036. doi: 10.1016/j.conbuildmat.2019.117036
|
[11] |
J.J. Li, S. Cao, E. Yilmaz, and Y.P. Liu, Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 345. doi: 10.1007/s12613-021-2351-x
|
[12] |
S. Yin, Y. Shao, A. Wu, Y.M. Wang, and X. Chen, Expansion and strength properties of cemented backfill using sulphidic mill tailings, Constr. Build. Mater., 165(2018), p. 138. doi: 10.1016/j.conbuildmat.2018.01.005
|
[13] |
D. Wu, W. Sun, S. Liu, and C. Qu, Effect of microwave heating on thermo-mechanical behavior of cemented tailings backfill, Constr. Build. Mater., 266(2021), art. No. 121180. doi: 10.1016/j.conbuildmat.2020.121180
|
[14] |
C. Qi, A. Fourie, and Q. Chen, Neural network and particle swarm optimization for predicting the unconfined compressive strength of cemented paste backfill, Constr. Build. Mater., 159(2018), p. 473. doi: 10.1016/j.conbuildmat.2017.11.006
|
[15] |
S. Zhao, Q. Sui, C. Cao, et al., Mechanical model of lateral fracture for the overlying hard rock strata along coal mine goaf, Geomech. Eng., 27(2021), No. 1, p. 75.
|
[16] |
Y. Zhang, W. Gao, W. Ni, et al., Influence of calcium hydroxide addition on arsenic leaching and solidification/stabilisation behaviour of metallurgical-slag-based green mining fill, J. Hazard. Mater., 390(2020), art. No. 122161. doi: 10.1016/j.jhazmat.2020.122161
|
[17] |
X.D. Zhao, H.X. Zhang, and W.C. Zhu, Fracture evolution around pre-existing cylindrical cavities in brittle rocks under uniaxial compression, Trans. Nonferrous Met. Soc. China, 24(2014), No. 3, p. 806. doi: 10.1016/S1003-6326(14)63129-0
|
[18] |
H.W. Song, A. Ahmad, F. Farooq, et al., Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms, Constr. Build. Mater., 308(2021), art. No. 125021. doi: 10.1016/j.conbuildmat.2021.125021
|
[19] |
G. Xue, E. Yilmaz, W. Song, and S. Cao, Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes, Constr. Build. Mater., 241(2020), art. No. 118113. doi: 10.1016/j.conbuildmat.2020.118113
|
[20] |
E.M. Li, J. Zhou, X.Z. Shi, et al., Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill, Eng. Comput., 37(2021), No. 4, p. 3519. doi: 10.1007/s00366-020-01014-x
|
[21] |
D.W. Zhang, K.F. Zhao, H. Li, D.M. Wang, L.L. Wang, and G.F. Zhang, Dispersion properties of fly ash–slag powders under the different environment, Constr. Build. Mater., 296(2021), art. No. 123649. doi: 10.1016/j.conbuildmat.2021.123649
|
[22] |
S. Zhang, T. Shi, W. Ni, et al., The mechanism of hydrating and solidifying green mine fill materials using circulating fluidized bed fly ash–slag-based agent, J. Hazard. Mater., 415(2021), art. No. 125625. doi: 10.1016/j.jhazmat.2021.125625
|
[23] |
P.V.R.K. Reddy and D.R. Prasad, A study on workability, strength and microstructure characteristics of graphene oxide and fly ash based concrete, Mater. Today Proc., 62(2022), p. 2919. doi: 10.1016/j.matpr.2022.02.495
|
[24] |
M. Zhai, J. Zhao, D. Wang, Y. Wang, and Q. Wang, Hydration properties and kinetic characteristics of blended cement containing lithium slag powder, J. Build. Eng., 39(2021), art. No. 102287. doi: 10.1016/j.jobe.2021.102287
|
[25] |
V. Nilsen, L.T. Pham, M. Hibbard, A. Klager, S. Cramer, and D. Morgan, Prediction of concrete coefficient of thermal expansion and other properties using machine learning, Constr. Build. Mater., 220(2019), p. 587. doi: 10.1016/j.conbuildmat.2019.05.006
|
[26] |
Y.E. Asri, M.B. Aicha, M. Zaher, and A.H. Alaoui, Prediction of compressive strength of self-compacting concrete using four machine learning technics, Mater. Today Proc., 57(2022), p. 859. doi: 10.1016/j.matpr.2022.02.487
|
[27] |
C.C. Qi, Q.S. Chen, A. Fourie, et al., Constitutive modelling of cemented paste backfill: A data-mining approach, Constr. Build. Mater., 197(2019), p. 262. doi: 10.1016/j.conbuildmat.2018.11.142
|
[28] |
C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
|
[29] |
Z. Yu, X.Z. Shi, X. Chen, et al., Artificial intelligence model for studying unconfined compressive performance of fiber-reinforced cemented paste backfill, Trans. Nonferrous Met. Soc. China, 31(2021), No. 4, p. 1087. doi: 10.1016/S1003-6326(21)65563-2
|
[30] |
J. Wu, H. Jing, Q. Yin, L. Yu, B. Meng, and S. Li, Strength prediction model considering material, ultrasonic and stress of cemented waste rock backfill for recycling gangue, J. Clean. Prod., 276(2020), art. No. 123189. doi: 10.1016/j.jclepro.2020.123189
|
[31] |
C. Qi, Q. Chen, and S.S. Kim, Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization, Miner. Eng., 155(2020), art. No. 106422. doi: 10.1016/j.mineng.2020.106422
|
[32] |
C. Qi, Q. Chen, A. Fourie, and Q. Zhang, An intelligent modelling framework for mechanical properties of cemented paste backfill, Miner. Eng., 123(2018), p. 16. doi: 10.1016/j.mineng.2018.04.010
|
[33] |
E. Barreno-Avila, E. Moya-Moya, and C. Pérez-Salinas, Rice-husk fiber reinforced composite (RFRC) drilling parameters optimization using RSM based desirability function approach, Mater. Today Proc., 49(2022), p. 167. doi: 10.1016/j.matpr.2021.07.498
|
[34] |
M.A. Fauzi, M.F. Arshad, N.M. Nor, and E. Ghazali, Modeling and optimization of properties for unprocessed-fly ash (u-FA) controlled low-strength material as backfill materials, Clean. Eng. Technol., 6(2022), art. No. 100395. doi: 10.1016/j.clet.2021.100395
|
[35] |
L. Zhu, Z. Jin, Y. Zhao, and Y. Duan, Rheological properties of cemented coal gangue backfill based on response surface methodology, Constr. Build. Mater., 306(2021), art. No. 124836. doi: 10.1016/j.conbuildmat.2021.124836
|
[36] |
Y. Wang, H. Zhang, Y. Tan, and J. Zhu, Sealing performance of compacted block joints backfilled with bentonite paste or a particle-powder mixture, Soils Found., 61(2021), No. 2, p. 496. doi: 10.1016/j.sandf.2021.01.005
|
[37] |
K.R. Vishwakarma, N.L. Richards, and M.C. Chaturvedi, Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC® 718PLUS™ superalloy, Mater. Sci. Eng. A, 480(2008), No. 1-2, p. 517. doi: 10.1016/j.msea.2007.08.002
|
[38] |
J.H. Hu, F.W. Zhao, Y. Kuang, D.J. Yang, M.H. Zheng, and L. Zhao, Microscopic characteristics of the action of an air entraining agent on cemented paste backfill pores, Alex. Eng. J., 59(2020), No. 3, p. 1583. doi: 10.1016/j.aej.2020.04.005
|
[39] |
J.X. Xiao, X. Li, and J.H. Shi, Local linear smoothers using inverse Gaussian regression, Stat. Papers, 60(2019), No. 4, p. 1225. doi: 10.1007/s00362-017-0871-2
|
[40] |
J.Q. Shi, R. Murray-Smith, and D.M. Titterington, Bayesian regression and classification using mixtures of Gaussian processes, Int. J. Adapt. Control Signal Process., 17(2003), No. 2, p. 149. doi: 10.1002/acs.744
|
[41] |
J.Q. Shi, B. Wang, R. Murray-Smith, and D.M. Titterington, Gaussian process functional regression modeling for batch data, Biometrics, 63(2007), No. 3, p. 714. doi: 10.1111/j.1541-0420.2007.00758.x
|
[42] |
J. Dearmon and T.E. Smith, Gaussian process regression and Bayesian model averaging: An alternative approach to modeling spatial phenomena, Geogr. Anal., 48(2016), No. 1, p. 82. doi: 10.1111/gean.12083
|
[43] |
C.H. Yu, M. Li, C. Noe, S. Fischer-Baum, and M. Vannucci, Bayesian inference for stationary points in Gaussian process regression models for event-related potentials analysis, Biometrics, 2022. DOI: 10.1111/biom.13621
|
[44] |
C. Demay, B. Iooss, L. Le Gratiet, and A. Marrel, Model selection based on validation criteria for Gaussian process regression: An application with highlights on the predictive variance, Qual. Reliab. Eng. Int., 38(2022), No. 3, p. 1482. doi: 10.1002/qre.2973
|
[45] |
G. Maculotti, G. Genta, D. Quagliotti, M. Galetto, and H. Hansen, Gaussian process regression-based detection and correction of disturbances in surface topography measurements, Qual. Reliab. Eng. Int., 38(2021), No. 3, p. 1501. doi: 10.1002/qre.2980
|
[46] |
T. Mukherjee, A. Banerjee, G. Varsamopoulos, S.K.S. Gupta, and S. Rungta, Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers, Comput. Netw., 53(2009), No. 17, p. 2888. doi: 10.1016/j.comnet.2009.06.008
|
[47] |
A. Rezaei-Bazkiaei, E. Dehghan-Niri, E.M. Kolahdouz, A.S. Weber, and G.F. Dargush, A passive design strategy for a horizontal ground source heat pump pipe operation optimization with a non-homogeneous soil profile, Energy Build., 61(2013), p. 39. doi: 10.1016/j.enbuild.2013.01.040
|
[48] |
V. Houšt’, J. Eliáš, and L. Miča, Shape optimization of concrete buried arches, Eng. Struct., 48(2013), p. 716. doi: 10.1016/j.engstruct.2012.11.037
|
[49] |
K. Zorlu, C. Gokceoglu, F. Ocakoglu, H.A. Nefeslioglu, and S. Acikalin, Prediction of uniaxial compressive strength of sandstones using petrography-based models, Eng. Geol., 96(2008), No. 3-4, p. 141. doi: 10.1016/j.enggeo.2007.10.009
|