留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(11)

数据统计

分享

计量
  • 文章访问数:  347
  • HTML全文浏览量:  116
  • PDF下载量:  28
  • 被引次数: 0
Jing Wen, Hongyan Sun, Tao Jiang, Bojian Chen, Fangfang Li, and Mengxia Liu, Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 834-843. https://doi.org/10.1007/s12613-022-2564-7
Cite this article as:
Jing Wen, Hongyan Sun, Tao Jiang, Bojian Chen, Fangfang Li, and Mengxia Liu, Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 834-843. https://doi.org/10.1007/s12613-022-2564-7
引用本文 PDF XML SpringerLink
研究论文

基于扩散偶法的CaO–V2O5和MnO2–V2O5固相界面反应行为比较

  • 通讯作者:

    姜涛    E-mail: jiangt@smm.neu.edu.cn

文章亮点

  • (1) 基于扩散偶法深入研究了钙、锰组元与钒固相反应的界面互扩散特征。
  • (2) 阐明了焙烧过程中钒酸钙与钒酸锰的生成机制。
  • (3) 系统比较了CaO–V2O5和MnO2–V2O5扩散产物、扩散系数及扩散行为的差异。
  • 钒是我国重要的战略金属资源,广泛应用于钢铁、化工、航空航天等领域。钒渣作为我国最重要的含钒原料,其钙化提钒及锰化提钒工艺在钒的高效分离、尾渣利用和环境保护方面优势显著,但焙烧过程中钒酸钙和钒酸锰始终共存。两种钒酸盐的生成机理及钒与钙、锰反应能力的差异是两种提钒工艺的基本问题和共性问题,这对充实提钒基础理论和促进提钒工艺优化具有重要意义。为此,本文基于扩散偶研究方法,通过制备氧化钙–氧化钒和二氧化锰–氧化钒扩散偶,并在不同时间恒温焙烧,比较研究了钙、锰与钒组元固相反应的界面扩散行为差异;阐明了钒酸钙和钒酸锰的生成机理;进一步基于扫描电子显微镜和能谱分析研究并计算了扩散产物和扩散系数随焙烧时间的变化规律。结果表明,随着焙烧时间的延长,氧化钙–氧化钒、二氧化锰–氧化钒两组扩散反应逐渐进行。氧化钙–氧化钒扩散偶中钙和钒的分布区域边界始终清晰。而对于二氧化锰–氧化钒扩散偶而言,随着恒温焙烧时间的延长,二氧化锰逐渐分解生成三氧化二锰,钒组元能扩散到三氧化二锰内部,但仅有部分钒与锰反应形成扩散产物层。氧化钙–氧化钒、二氧化锰–氧化钒扩散偶的界面反应产物分别是偏钒酸钙和偏钒酸锰。恒温焙烧16 h后,产物厚度分别为39.85和32.13 μm,且由于组元扩散反应能力的限制,两个扩散偶均达到反应平衡。相同恒温焙烧时间内,氧化钙–氧化钒扩散偶的扩散系数略高于二氧化锰–氧化钒扩散偶,这说明钒与钙的扩散反应比钒与锰的扩散反应更易进行。
  • Research Article

    Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method

    + Author Affiliations
    • The formation mechanism of calcium vanadate and manganese vanadate and the difference between calcium and manganese in the reaction with vanadium are basic issues in the calcification roasting and manganese roasting process with vanadium slag. In this work, CaO–V2O5 and MnO2–V2O5 diffusion couples were prepared and roasted for different time periods to illustrate and compare the diffusion reaction mechanisms. Then, the changes in the diffusion product and diffusion coefficient were investigated and calculated based on scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) analysis. Results show that with the extension of the roasting time, the diffusion reaction gradually proceeds among the CaO–V2O5 and MnO2–V2O5 diffusion couples. The regional boundaries of calcium and vanadium are easily identifiable for the CaO–V2O5 diffusion couple. Meanwhile, for the MnO2–V2O5 diffusion couple, MnO2 gradually decomposes to form Mn2O3, and vanadium diffuses into the interior of Mn2O3. Only a part of vanadium combines with manganese to form the diffusion production layer. CaV2O6 and MnV2O6 are the interfacial reaction products of the CaO–V2O5 and MnO2–V2O5 diffusion couples, respectively, whose thicknesses are 39.85 and 32.13 μm when roasted for 16 h. After 16 h, both diffusion couples reach the reaction equilibrium due to the limitation of diffusion. The diffusion coefficient of the CaO–V2O5 diffusion couple is higher than that of the MnO2–V2O5 diffusion couple for the same roasting time, and the diffusion reaction between vanadium and calcium is easier than that between vanadium and manganese.
    • loading
    • [1]
      R.R. Moskalyk and A.M. Alfantazi, Processing of vanadium: A review, Miner. Eng., 16(2003), No. 9, p. 793. doi: 10.1016/S0892-6875(03)00213-9
      [2]
      X.M. Xu, F.Y. Xiong, J.S. Meng, et al., Vanadium-based nanomaterials: A promising family for emerging metal-ion batteries, Adv. Funct. Mater., 30(2020), No. 10, art. No. 1904398. doi: 10.1002/adfm.201904398
      [3]
      P.W. Shen, Y.X. Che, H.J. Luo, and Y.D. Gu, Inorganic Chemistry Books, Science Press, Beijing, 2008.
      [4]
      S.Z. Yang, Vanadium Metallurgy, Metallurgical Industry Press, Beijing, 2010.
      [5]
      Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
      [6]
      Y.N. Fan, F. Ma, J.S. Liang, et al., Accelerated polysulfide conversion on hierarchical porous vanadium–nitrogen–carbon for advanced lithium-sulfur batteries, Nanoscale, 12(2020), No. 2, p. 584. doi: 10.1039/C9NR09037A
      [7]
      J.M. Zhu, P. Zhao, M.H. Jing, H.J. Wu, and J.J. Li, Preparation of vanadium–nitrogen alloy at low temperature by a coupled electric and thermal field, Vacuum, 195(2022), art. No. 110644. doi: 10.1016/j.vacuum.2021.110644
      [8]
      Y. Shi, C.K. Eze, B.Y. Xiong, et al., Recent development of membrane for vanadium redox flow battery applications: A review, Appl. Energy, 238(2019), p. 202. doi: 10.1016/j.apenergy.2018.12.087
      [9]
      Y.Q. Jiang, M.C. Du, G. Cheng, et al., Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery, J. Energy Chem., 59(2021), p. 706. doi: 10.1016/j.jechem.2020.12.013
      [10]
      K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, and S. Tasnim, Vanadium redox flow batteries: A comprehensive review, J. Energy Storage, 25(2019), art. No. 100844. doi: 10.1016/j.est.2019.100844
      [11]
      Y.R. Lv, C. Han, Y. Zhu, et al., Recent advances in metals and metal oxides as catalysts for vanadium redox flow battery: Properties, structures, and perspectives, J. Mater. Sci. Technol., 75(2021), p. 96. doi: 10.1016/j.jmst.2020.09.042
      [12]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag, J. Hazard. Mater., 336(2017), p. 1. doi: 10.1016/j.jhazmat.2017.04.060
      [13]
      M. Li, S.L. Zheng, B. Liu, et al., A clean and efficient method for recovery of vanadium from vanadium slag: Nonsalt roasting and ammonium carbonate leaching processes, Miner. Process. Extr. Metall. Rev., 38(2017), No. 4, p. 228. doi: 10.1080/08827508.2017.1288117
      [14]
      H.Y. Gao, T. Jiang, Y.Z. Xu, J. Wen, and X.X. Xue, Change in phase, microstructure, and physical-chemistry properties of high chromium vanadium slag during microwave calcification-roasting process, Powder Technol., 340(2018), p. 520. doi: 10.1016/j.powtec.2018.09.045
      [15]
      Z.H. Dong, J. Zhang, and B.J. Yan, A new approach for the comprehensive utilization of vanadium slag, Metall. Mater. Trans. B, 53(2022), No. 4, p. 2198. doi: 10.1007/s11663-022-02518-1
      [16]
      Y. Guo, H.Y. Li, Y.H. Yuan, et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974. doi: 10.1007/s12613-020-2105-1
      [17]
      J.C. Lee, Kurniawan, E.Y. Kim, K.W. Chung, R. Kim, and H.S. Jeon, A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production, J. Mater. Res. Technol., 12(2021), p. 343. doi: 10.1016/j.jmrt.2021.02.065
      [18]
      H.Y. Li, C.J. Wang, M.M. Lin, Y. Guo, and B. Xie, Green one-step roasting method for efficient extraction of vanadium and chromium from vanadium–chromium slag, Powder Technol., 360(2020), p. 503. doi: 10.1016/j.powtec.2019.10.074
      [19]
      Y. Guo, H.Y. Li, S. Shen, C.J. Wang, J. Diao, and B. Xie, Recovery of vanadium from vanadium slag with high phosphorus content via recyclable microemulsion extraction, Hydrometallurgy, 198(2020), art. No. 105509. doi: 10.1016/j.hydromet.2020.105509
      [20]
      J.Y. Xiang, X. Wang, G.S. Pei, Q.Y. Huang, and X.W. Lü, Solid-state reaction of a CaO–V2O5 mixture: A fundamental study for the vanadium extraction process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1462. doi: 10.1007/s12613-020-2136-7
      [21]
      M. Li, B. Liu, S.L. Zheng, et al., A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching, J. Cleaner Prod., 149(2017), p. 206. doi: 10.1016/j.jclepro.2017.02.093
      [22]
      S.Y. Liu, X.B. He, Y.D. Wang, and L.J. Wang, Cleaner and effective extraction and separation of iron from vanadium slag by carbothermic reduction–chlorination–molten salt electrolysis, J. Cleaner Prod., 284(2021), art. No. 124674. doi: 10.1016/j.jclepro.2020.124674
      [23]
      P. Cao, Research on vanadium slag roasted with calcium salt, Iron Steel Vanadium Titanium, 33(2012), No. 1, p. 30.
      [24]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Cleaner Prod., 170(2018), p. 1089. doi: 10.1016/j.jclepro.2017.09.255
      [25]
      J. Wen, T. Jiang, Y.Z. Xu, J. Cao, and X.X. Xue, Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting–(NH4)2SO4 leaching, J. Ind. Eng. Chem., 71(2019), p. 327. doi: 10.1016/j.jiec.2018.11.043
      [26]
      Brief Introduction of Xichang Steel Vanadium Co., Ltd. of Panzhihua Iron and Steel Group [2022-06-30], https://www. pzhsteel.com.cn/xcgf/ind ex.php?s=/Home/Article/pg_jianjie/art_bm_id/89/fl/two/msg_id/156.
      [27]
      J. Wen, T. Jiang, M. Zhou, H.Y. Gao, J.Y. Liu, and X.X. Xue, Roasting and leaching behaviors of vanadium and chromium in calcification roasting–acid leaching of high-chromium vanadium slag, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 515. doi: 10.1007/s12613-018-1598-3
      [28]
      T.X. Yu, T. Jiang, J. Wen, H.Y. Sun, M. Li, and Y. Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2144. doi: 10.1007/s12613-021-2334-y
      [29]
      J. Wen, T. Jiang, H.Y. Sun, and T.X. Yu, Novel understanding of simultaneous extraction of vanadium and manganese from vanadium slag and low-grade pyrolusite based on selective oxidation–reduction roasting, ACS Sustainable Chem. Eng., 8(2020), No. 15, p. 5927. doi: 10.1021/acssuschemeng.0c00080
      [30]
      J. Wen, T. Jiang, J.P. Wang, H.Y. Gao, and L.G. Lu, An efficient utilization of high chromium vanadium slag: Extraction of vanadium based on manganese carbonate roasting and detoxification processing of chromium-containing tailings, J. Hazard. Mater., 378(2019), art. No. 120733. doi: 10.1016/j.jhazmat.2019.06.010
      [31]
      J. Wen, T. Jiang, J.P. Wang, L.G. Lu, and H.Y. Sun, Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and manganese recycle, J. Cleaner Prod., 261(2020), art. No. 121205. doi: 10.1016/j.jclepro.2020.121205
      [32]
      H.R. Yue and X.X. Xue, Generated compounds at the V-slag/CaO diffusion surface and diffusion characteristics of V and Ca in calcium vanadate, J. Hazard. Mater., 393(2020), art. No. 122368. doi: 10.1016/j.jhazmat.2020.122368
      [33]
      H.R. Yue and X.X. Xue, Evolution of generated calcium vanadates at different locations in the vicinity of the V2O5/CaO interface with annealing parameters, Metall. Mater. Trans. B, 51(2020), No. 5, p. 2358. doi: 10.1007/s11663-020-01919-4
      [34]
      B.J. Chen, M. Zhou, T. Jiang, and L. Li, Observation of diffusion behavior between Cr2O3 and calcium ferrite based on diffusion couple method at 1373 K, J. Alloys Compd., 802(2019), p. 103. doi: 10.1016/j.jallcom.2019.06.137
      [35]
      B.J. Chen, T. Jiang, M. Zhou, L. Li, J. Wen, and Y.C. Wen, Interdiffusion kinetics and solid-state reaction mechanism between Cr2O3 and calcium ferrite based on diffusion couple method, J. Alloys Compd., 865(2021), art. No. 158754. doi: 10.1016/j.jallcom.2021.158754
      [36]
      Z.S. Ren, X.J. Hu, X.X. Xue, and K. Chou, Solid state reaction studies in Fe3O4–TiO2 system by diffusion couple method, J. Alloys Compd., 580(2013), p. 182. doi: 10.1016/j.jallcom.2013.05.114
      [37]
      J.H. Zhang, W. Zhang, L. Zhang, and S.Q. Gu, Mechanism of vanadium slag roasting with calcium oxide, Int. J. Miner. Process., 138(2015), p. 20. doi: 10.1016/j.minpro.2015.03.007
      [38]
      J.H. Zhang, W. Zhang, and Z.L. Xue, Oxidation kinetics of vanadium slag roasting in the presence of calcium oxide, Miner. Process. Extr. Metall. Rev., 38(2017), No. 5, p. 265. doi: 10.1080/08827508.2017.1289197
      [39]
      J. Wen, T. Jiang, X.L. Zheng, J.P. Wang, J. Cao, and M. Zhou, Efficient separation of chromium and vanadium by calcification roasting–sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation, Sep. Purif. Technol., 230(2020), art. No. 115881. doi: 10.1016/j.seppur.2019.115881
      [40]
      H.Y. Sun, Study on Formation Mechanism of Calcium Vanadate/Chromate during Calcification Roasting Process of High-chromium Vanadium Slag [Dissertation], Northeastern University, Shenyang, 2021.
      [41]
      M.F. Jin, G.S. Li, M.S. Chu, and F.M. Shen, Diffusion between MgO and hematite during sintering, Iron Steel, 43(2008), No. 3, p. 10.
      [42]
      H.Y. Sun, J. Wen, B.J. Chen, T.X. Yu, and T. Jiang, Solid phase reaction and diffusion behavior of V2O5/Cr2O3–CaO system based on calcification roasting of chromium-containing vanadium slag, Iron Steel Vanadium Titanium, 42(2021), No. 3, p. 17. doi: 10.7513/j.issn.1004-7638.2021.03.003

    Catalog


    • /

      返回文章
      返回