留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(8)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  819
  • HTML全文浏览量:  284
  • PDF下载量:  74
  • 被引次数: 0
Chuanchang Li, Weixuan Wang, Xiaoliang Zeng, Chunxuan Liu, and Rong Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 772-781. https://doi.org/10.1007/s12613-022-2565-6
Cite this article as:
Chuanchang Li, Weixuan Wang, Xiaoliang Zeng, Chunxuan Liu, and Rong Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 772-781. https://doi.org/10.1007/s12613-022-2565-6
引用本文 PDF XML SpringerLink
研究论文

定型相变热界面材料:低密度聚乙烯/石蜡/铝复合材料

  • 通讯作者:

    李传常    E-mail: chuanchangli@csust.edu.cn

文章亮点

  • (1) 制备的填充Al粉的PW/LDPE形成稳定的热界面材料。(2) LDPE可以很好地保持复合材料的结构稳定性。(3) 添加15wt%Al粉可提高PW/LDPE的导热系数67%。(4) 添加15wt%Al粉的复合材料具有优异的循环稳定性。
  • 热界面材料在电子器件热管理中起着至关重要的作用,可显著降低接触热阻。由于固–液接触面之间的接触热阻比固–固接触面小得多,但传统的固–液相变材料存在易泄漏问题。因此,本研究工作研制了一种导热增强的定型相变热界面材料。通过石蜡(PW)和低密度聚乙烯(LDPE)的熔融共混,提高了PW的稳定性,PW/LDPE复合材料的泄漏率仅为0.8%,添加15wt%的Al粉提高其导热系数67%。此外,系统地研究了Al粉的添加对PW/LDPE基体的内部结构、热性能和相变行为的影响。系列结果证实,形状稳定的PW/LDPE/Al热界面材料在电子器件热管理领域具有良好的应用潜力。
  • Research Article

    Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material

    + Author Affiliations
    • Thermal interface materials (TIMs) play a vital role in the thermal management of electronic devices and can significantly reduce thermal contact resistance (TCR). The TCR between the solid–liquid contact surface is much smaller than that of the solid–solid contact surface, but conventional solid–liquid phase change materials are likely to cause serious leakage. Therefore, this work has prepared a new form-stable phase change thermal interface material. Through the melt blending of paraffin wax (PW) and low-density polyethylene (LDPE), the stability is improved and it has an excellent coating effect on PW. The addition of aluminum (Al) powder improves the low thermal conductivity of PW/LDPE, and the addition of 15wt% Al powder improves the thermal conductivity of the internal structure of the matrix by 67%. In addition, the influence of the addition of Al powder on the internal structure, thermal properties, and phase change behavior of the PW/LDPE matrix was systematically studied. The results confirmed that the addition of Al powder improved the thermal conductivity of the material without a significant impact on other properties, and the thermal conductivity increased with the increase of Al addition. Therefore, morphologically stable PW/LDPE/Al is an important development direction for TIMs.
    • loading
    • [1]
      Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng, and W.C. Ren, Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites, Adv. Mater., 31(2019), No. 19, art. No. 1900199. doi: 10.1002/adma.201900199
      [2]
      J.L. Smoyer and P.M. Norris, Brief historical perspective in thermal management and the shift toward management at the nanoscale, Heat Transfer Eng., 40(2019), No. 3-4, p. 269. doi: 10.1080/01457632.2018.1426265
      [3]
      N. Mehra, L.W. Mu, T. Ji, et al., Thermal transport in polymeric materials and across composite interfaces, Appl. Mater. Today, 12(2018), p. 92. doi: 10.1016/j.apmt.2018.04.004
      [4]
      M.J. Gibbons, M. Marengo, and T. Persoons, A review of heat pipe technology for foldable electronic devices, Appl. Therm. Eng., 194(2021), art. No. 117087. doi: 10.1016/j.applthermaleng.2021.117087
      [5]
      Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
      [6]
      K.A. Samah, M.R. Sahar, M. Yusop, and M.F. Omar, Phase modification and dielectric properties of a cullet–paper ash–Kaolin clay-based ceramic, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 350. doi: 10.1007/s12613-018-1578-7
      [7]
      N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. 2200597. doi: 10.1002/smtd.202200597
      [8]
      J. Hansson, T.M.J. Nilsson, L.L. Ye, and J. Liu, Novel nanostructured thermal interface materials: A review, Int. Mater. Rev., 63(2018), No. 1, p. 22. doi: 10.1080/09506608.2017.1301014
      [9]
      Y.S. Zhao, X.L. Zeng, L.L. Ren, X.N. Xia, X.L. Zeng, and J. Zhou, Heat conduction of electrons and phonons in thermal interface materials, Mater. Chem. Front., 5(2021), No. 15, p. 5617. doi: 10.1039/D0QM01136C
      [10]
      P. Zhu, P.P. Wang, P.Z. Shao, et al., Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 200. doi: 10.1007/s12613-021-2339-6
      [11]
      J.P. Gwinn and R.L. Webb, Performance and testing of thermal interface materials, Microelectron. J., 34(2003), No. 3, p. 215. doi: 10.1016/S0026-2692(02)00191-X
      [12]
      B. Wicklein, A. Kocjan, G. Salazar-Alvarez, et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol., 10(2015), No. 3, p. 277. doi: 10.1038/nnano.2014.248
      [13]
      E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475. doi: 10.1007/s12613-020-2176-z
      [14]
      Z.Q. Liu, Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling, Appl. Therm. Eng., 185(2021), art. No. 116415. doi: 10.1016/j.applthermaleng.2020.116415
      [15]
      D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
      [16]
      M.C.K. Swamy and Satyanarayan, A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications, J. Electron. Mater., 48(2019), No. 12, p. 7623. doi: 10.1007/s11664-019-07623-7
      [17]
      Y.C. Zhou, S.Q. Wu, Y.H. Long, et al., Recent advances in thermal interface materials, ES Mater. Manuf., 7(2020), p. 4.
      [18]
      C.P. Feng, Recent advances in polymer-based thermal interface materials for thermal management: A mini-review, Compos. Commun., 22(2020), art. No. 100528. doi: 10.1016/j.coco.2020.100528
      [19]
      L.M. Peng, Z. Xu, W.Y. Wang, et al., Leakage-proof and malleable polyethylene wax vitrimer phase change materials for thermal interface management, ACS Appl. Energy Mater., 4(2021), No. 10, p. 11173. doi: 10.1021/acsaem.1c02052
      [20]
      R.R. Cao, Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites, Energy, 138(2017), p. 157. doi: 10.1016/j.energy.2017.07.049
      [21]
      Y. Xu, M.J. Li, Z.J. Zheng, and X.D. Xue, Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment, Appl. Energy, 212(2018), p. 868. doi: 10.1016/j.apenergy.2017.12.082
      [22]
      Y.X. Lin, C.Q. Zhu, G. Alva, and G.Y. Fang, Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage, Appl. Energy, 228(2018), p. 1801. doi: 10.1016/j.apenergy.2018.07.068
      [23]
      J. Yang, Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage, Appl. Therm. Eng., 163(2019), art. No. 114412. doi: 10.1016/j.applthermaleng.2019.114412
      [24]
      X.N. Fei, S.J. Liu, B.L. Zhang, and H.B. Zhao, Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules, Colloids Surf. A, 608(2021), art. No. 125503. doi: 10.1016/j.colsurfa.2020.125503
      [25]
      B.Y. Zhang, Z. Zhang, S. Kapar, et al., Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization, ACS Sustainable Chem. Eng., 7(2019), No. 21, p. 17756. doi: 10.1021/acssuschemeng.9b04134
      [26]
      A. Serrano, Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules, Appl. Therm. Eng., 103(2016), p. 226. doi: 10.1016/j.applthermaleng.2016.04.098
      [27]
      Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733. doi: 10.1016/j.ensm.2022.07.017
      [28]
      W.W. Wang, Y.B. Cai, M.Y. Du, et al., Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31997. doi: 10.1021/acsami.9b10330
      [29]
      X.C. Wang, G.Y. Li, G. Hong, Q. Guo, and X.T. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Interfaces, 9(2017), No. 47, p. 41323. doi: 10.1021/acsami.7b13969
      [30]
      X. Chen, P. Cheng, Z.D. Tang, X.L. Xu, H.Y. Gao, and G. Wang, Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion, Adv. Sci., 8(2021), No. 9, art. No. 2001274. doi: 10.1002/advs.202001274
      [31]
      M.M. Rahman, A.O. Oni, E. Gemechu, and A. Kumar, Assessment of energy storage technologies: A review, Energy Convers. Manage., 223(2020), art. No. 113295. doi: 10.1016/j.enconman.2020.113295
      [32]
      E. Alehosseini and S.M. Jafari, Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management, Adv. Colloid Interface Sci., 283(2020), art. No. 102226. doi: 10.1016/j.cis.2020.102226
      [33]
      A. Schweighuber, A. Felgel-Farnholz, T. Bögl, J. Fischer, and W. Buchberger, Investigations on the influence of multiple extrusion on the degradation of polyolefins, Polym. Degrad. Stab., 192(2021), art. No. 109689. doi: 10.1016/j.polymdegradstab.2021.109689
      [34]
      C.M. Geiselhart, W.W. Xue, C. Barner-Kowollik, and H. Mutlu, Degradable redox-responsive polyolefins, Macromolecules, 54(2021), No. 4, p. 1775. doi: 10.1021/acs.macromol.1c00010
      [35]
      P. Awasthi and S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities, Addit. Manuf., 46(2021), art. No. 102177.
      [36]
      Z.X. Peng, K.H. Xian, Y. Cui, et al., Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells, Adv. Mater., 33(2021), No. 49, art. No. 2106732. doi: 10.1002/adma.202106732
      [37]
      P. Sobolčiak, M. Mrlik, A. Popelka, et al., Foamed phase change materials based on recycled polyethylene/paraffin wax blends, Polymers, 13(2021), No. 12, art. No. 1987. doi: 10.3390/polym13121987
      [38]
      B.X. Li, T.X. Liu, L.Y. Hu, Y.F. Wang, and L.N. Gao, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chem. Eng., 1(2013), No. 3, p. 374. doi: 10.1021/sc300082m
      [39]
      D. Kim, I. Park, J. Seo, H. Han, and W. Jang, Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films, J. Polym. Res., 22(2015), No. 2, p. 1. doi: 10.1007/s10965-014-0642-x
      [40]
      Y. Wang, H. Shi, T.D. Xia, T. Zhang, and H.X. Feng, Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated, Mater. Chem. Phys., 135(2012), No. 1, p. 181. doi: 10.1016/j.matchemphys.2012.04.050
      [41]
      H. Kwon, D. Kim, J. Seo, and H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromol. Res., 21(2013), No. 9, p. 987. doi: 10.1007/s13233-013-1124-4
      [42]
      I. Arcan and A. Yemenicioğlu, Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme, Food Res. Int., 51(2013), No. 1, p. 208. doi: 10.1016/j.foodres.2012.12.011
      [43]
      S. Bahrami, M. Mizani, M. Honarvar, and M.A. Noghabi, Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films, Iran. Polym. J., 26(2017), No. 11, p. 885. doi: 10.1007/s13726-017-0574-5
      [44]
      Q.Q. Huang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Appl. Therm. Eng., 183(2021), art. No. 116151. doi: 10.1016/j.applthermaleng.2020.116151
      [45]
      J.A. Molefi, A.S. Luyt, and I. Krupa, Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax, Thermochim. Acta, 500(2010), No. 1-2, p. 88. doi: 10.1016/j.tca.2010.01.002
      [46]
      A.S. Luyt and I. Krupa, Thermal behaviour of low and high molecular weight paraffin waxes used for designing phase change materials, Thermochim. Acta, 467(2008), No. 1-2, p. 117. doi: 10.1016/j.tca.2007.11.001
      [47]
      C.Q. Liu, Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3, Int. J. Therm. Sci., 152(2020), art. No. 106293. doi: 10.1016/j.ijthermalsci.2020.106293

    Catalog


    • /

      返回文章
      返回