Cite this article as: |
Chuanchang Li, Weixuan Wang, Xiaoliang Zeng, Chunxuan Liu, and Rong Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 772-781. https://doi.org/10.1007/s12613-022-2565-6 |
李传常 E-mail: chuanchangli@csust.edu.cn
[1] |
Z.H. Wu, C. Xu, C.Q. Ma, Z.B. Liu, H.M. Cheng, and W.C. Ren, Synergistic effect of aligned graphene nanosheets in graphene foam for high-performance thermally conductive composites, Adv. Mater., 31(2019), No. 19, art. No. 1900199. doi: 10.1002/adma.201900199
|
[2] |
J.L. Smoyer and P.M. Norris, Brief historical perspective in thermal management and the shift toward management at the nanoscale, Heat Transfer Eng., 40(2019), No. 3-4, p. 269. doi: 10.1080/01457632.2018.1426265
|
[3] |
N. Mehra, L.W. Mu, T. Ji, et al., Thermal transport in polymeric materials and across composite interfaces, Appl. Mater. Today, 12(2018), p. 92. doi: 10.1016/j.apmt.2018.04.004
|
[4] |
M.J. Gibbons, M. Marengo, and T. Persoons, A review of heat pipe technology for foldable electronic devices, Appl. Therm. Eng., 194(2021), art. No. 117087. doi: 10.1016/j.applthermaleng.2021.117087
|
[5] |
Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
|
[6] |
K.A. Samah, M.R. Sahar, M. Yusop, and M.F. Omar, Phase modification and dielectric properties of a cullet–paper ash–Kaolin clay-based ceramic, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 350. doi: 10.1007/s12613-018-1578-7
|
[7] |
N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. 2200597. doi: 10.1002/smtd.202200597
|
[8] |
J. Hansson, T.M.J. Nilsson, L.L. Ye, and J. Liu, Novel nanostructured thermal interface materials: A review, Int. Mater. Rev., 63(2018), No. 1, p. 22. doi: 10.1080/09506608.2017.1301014
|
[9] |
Y.S. Zhao, X.L. Zeng, L.L. Ren, X.N. Xia, X.L. Zeng, and J. Zhou, Heat conduction of electrons and phonons in thermal interface materials, Mater. Chem. Front., 5(2021), No. 15, p. 5617. doi: 10.1039/D0QM01136C
|
[10] |
P. Zhu, P.P. Wang, P.Z. Shao, et al., Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 200. doi: 10.1007/s12613-021-2339-6
|
[11] |
J.P. Gwinn and R.L. Webb, Performance and testing of thermal interface materials, Microelectron. J., 34(2003), No. 3, p. 215. doi: 10.1016/S0026-2692(02)00191-X
|
[12] |
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, et al., Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide, Nat. Nanotechnol., 10(2015), No. 3, p. 277. doi: 10.1038/nnano.2014.248
|
[13] |
E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475. doi: 10.1007/s12613-020-2176-z
|
[14] |
Z.Q. Liu, Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling, Appl. Therm. Eng., 185(2021), art. No. 116415. doi: 10.1016/j.applthermaleng.2020.116415
|
[15] |
D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
|
[16] |
M.C.K. Swamy and Satyanarayan, A review of the performance and characterization of conventional and promising thermal interface materials for electronic package applications, J. Electron. Mater., 48(2019), No. 12, p. 7623. doi: 10.1007/s11664-019-07623-7
|
[17] |
Y.C. Zhou, S.Q. Wu, Y.H. Long, et al., Recent advances in thermal interface materials, ES Mater. Manuf., 7(2020), p. 4.
|
[18] |
C.P. Feng, Recent advances in polymer-based thermal interface materials for thermal management: A mini-review, Compos. Commun., 22(2020), art. No. 100528. doi: 10.1016/j.coco.2020.100528
|
[19] |
L.M. Peng, Z. Xu, W.Y. Wang, et al., Leakage-proof and malleable polyethylene wax vitrimer phase change materials for thermal interface management, ACS Appl. Energy Mater., 4(2021), No. 10, p. 11173. doi: 10.1021/acsaem.1c02052
|
[20] |
R.R. Cao, Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites, Energy, 138(2017), p. 157. doi: 10.1016/j.energy.2017.07.049
|
[21] |
Y. Xu, M.J. Li, Z.J. Zheng, and X.D. Xue, Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment, Appl. Energy, 212(2018), p. 868. doi: 10.1016/j.apenergy.2017.12.082
|
[22] |
Y.X. Lin, C.Q. Zhu, G. Alva, and G.Y. Fang, Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage, Appl. Energy, 228(2018), p. 1801. doi: 10.1016/j.apenergy.2018.07.068
|
[23] |
J. Yang, Reduced graphene oxide and zirconium carbide co-modified melamine sponge/paraffin wax composites as new form-stable phase change materials for photothermal energy conversion and storage, Appl. Therm. Eng., 163(2019), art. No. 114412. doi: 10.1016/j.applthermaleng.2019.114412
|
[24] |
X.N. Fei, S.J. Liu, B.L. Zhang, and H.B. Zhao, Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules, Colloids Surf. A, 608(2021), art. No. 125503. doi: 10.1016/j.colsurfa.2020.125503
|
[25] |
B.Y. Zhang, Z. Zhang, S. Kapar, et al., Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization, ACS Sustainable Chem. Eng., 7(2019), No. 21, p. 17756. doi: 10.1021/acssuschemeng.9b04134
|
[26] |
A. Serrano, Reducing heat loss through the building envelope by using polyurethane foams containing thermoregulating microcapsules, Appl. Therm. Eng., 103(2016), p. 226. doi: 10.1016/j.applthermaleng.2016.04.098
|
[27] |
Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733. doi: 10.1016/j.ensm.2022.07.017
|
[28] |
W.W. Wang, Y.B. Cai, M.Y. Du, et al., Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31997. doi: 10.1021/acsami.9b10330
|
[29] |
X.C. Wang, G.Y. Li, G. Hong, Q. Guo, and X.T. Zhang, Graphene aerogel templated fabrication of phase change microspheres as thermal buffers in microelectronic devices, ACS Appl. Mater. Interfaces, 9(2017), No. 47, p. 41323. doi: 10.1021/acsami.7b13969
|
[30] |
X. Chen, P. Cheng, Z.D. Tang, X.L. Xu, H.Y. Gao, and G. Wang, Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion, Adv. Sci., 8(2021), No. 9, art. No. 2001274. doi: 10.1002/advs.202001274
|
[31] |
M.M. Rahman, A.O. Oni, E. Gemechu, and A. Kumar, Assessment of energy storage technologies: A review, Energy Convers. Manage., 223(2020), art. No. 113295. doi: 10.1016/j.enconman.2020.113295
|
[32] |
E. Alehosseini and S.M. Jafari, Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management, Adv. Colloid Interface Sci., 283(2020), art. No. 102226. doi: 10.1016/j.cis.2020.102226
|
[33] |
A. Schweighuber, A. Felgel-Farnholz, T. Bögl, J. Fischer, and W. Buchberger, Investigations on the influence of multiple extrusion on the degradation of polyolefins, Polym. Degrad. Stab., 192(2021), art. No. 109689. doi: 10.1016/j.polymdegradstab.2021.109689
|
[34] |
C.M. Geiselhart, W.W. Xue, C. Barner-Kowollik, and H. Mutlu, Degradable redox-responsive polyolefins, Macromolecules, 54(2021), No. 4, p. 1775. doi: 10.1021/acs.macromol.1c00010
|
[35] |
P. Awasthi and S.S. Banerjee, Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities, Addit. Manuf., 46(2021), art. No. 102177.
|
[36] |
Z.X. Peng, K.H. Xian, Y. Cui, et al., Thermoplastic elastomer tunes phase structure and promotes stretchability of high-efficiency organic solar cells, Adv. Mater., 33(2021), No. 49, art. No. 2106732. doi: 10.1002/adma.202106732
|
[37] |
P. Sobolčiak, M. Mrlik, A. Popelka, et al., Foamed phase change materials based on recycled polyethylene/paraffin wax blends, Polymers, 13(2021), No. 12, art. No. 1987. doi: 10.3390/polym13121987
|
[38] |
B.X. Li, T.X. Liu, L.Y. Hu, Y.F. Wang, and L.N. Gao, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chem. Eng., 1(2013), No. 3, p. 374. doi: 10.1021/sc300082m
|
[39] |
D. Kim, I. Park, J. Seo, H. Han, and W. Jang, Effects of the paraffin wax (PW) content on the thermal and permeation properties of the LDPE/PW composite films, J. Polym. Res., 22(2015), No. 2, p. 1. doi: 10.1007/s10965-014-0642-x
|
[40] |
Y. Wang, H. Shi, T.D. Xia, T. Zhang, and H.X. Feng, Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated, Mater. Chem. Phys., 135(2012), No. 1, p. 181. doi: 10.1016/j.matchemphys.2012.04.050
|
[41] |
H. Kwon, D. Kim, J. Seo, and H. Han, Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending, Macromol. Res., 21(2013), No. 9, p. 987. doi: 10.1007/s13233-013-1124-4
|
[42] |
I. Arcan and A. Yemenicioğlu, Development of flexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme, Food Res. Int., 51(2013), No. 1, p. 208. doi: 10.1016/j.foodres.2012.12.011
|
[43] |
S. Bahrami, M. Mizani, M. Honarvar, and M.A. Noghabi, Low molecular weight paraffin, as phase change material, in physical and micro-structural changes of novel LLDPE/LDPE/paraffin composite pellets and films, Iran. Polym. J., 26(2017), No. 11, p. 885. doi: 10.1007/s13726-017-0574-5
|
[44] |
Q.Q. Huang, Thermal management of lithium-ion battery pack through the application of flexible form-stable composite phase change materials, Appl. Therm. Eng., 183(2021), art. No. 116151. doi: 10.1016/j.applthermaleng.2020.116151
|
[45] |
J.A. Molefi, A.S. Luyt, and I. Krupa, Comparison of LDPE, LLDPE and HDPE as matrices for phase change materials based on a soft Fischer-Tropsch paraffin wax, Thermochim. Acta, 500(2010), No. 1-2, p. 88. doi: 10.1016/j.tca.2010.01.002
|
[46] |
A.S. Luyt and I. Krupa, Thermal behaviour of low and high molecular weight paraffin waxes used for designing phase change materials, Thermochim. Acta, 467(2008), No. 1-2, p. 117. doi: 10.1016/j.tca.2007.11.001
|
[47] |
C.Q. Liu, Thermal properties of a novel form-stable phase change thermal interface materials olefin block copolymer/paraffin filled with Al2O3, Int. J. Therm. Sci., 152(2020), art. No. 106293. doi: 10.1016/j.ijthermalsci.2020.106293
|