留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(6)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  699
  • HTML全文浏览量:  226
  • PDF下载量:  49
  • 被引次数: 0
Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, and Liang Zuo, First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 930-938. https://doi.org/10.1007/s12613-022-2566-5
Cite this article as:
Huaxin Qi, Jing Bai, Miao Jin, Jiaxin Xu, Xin Liu, Ziqi Guan, Jianglong Gu, Daoyong Cong, Xiang Zhao, and Liang Zuo, First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 930-938. https://doi.org/10.1007/s12613-022-2566-5
引用本文 PDF XML SpringerLink
研究论文

全d族Ni–(Co)–Mn–Cu–Ti合金马氏体相变、力学性能和磁性能的第一性原理计算

  • 通讯作者:

    白静    E-mail: baijing@neuq.edu.cn

    从道永    E-mail: dycong@ustb.edu.cn

文章亮点

  • (1) 系统地研究了Co和Cu共掺杂对Ni–Mn–Ti合金的马氏体相变、力学性能和磁性能的影响规律。
  • (2) Co掺杂有利于合金在弹热效应之外获得额外的磁热效应,Cu掺杂能降低Ni–(Co)–Mn–Ti合金的热滞后和各向异性。
  • (3) 从电子态密度的角度阐明了Ni–(Co)–Mn–Cu–Ti合金力学性能和磁性能的机理。
  • 全 d 族 Ni–Mn–Ti 基 Heusler 合金作为一种新型的智能材料,因其丰富的物理性质被广泛关注。与传统 Ni–Mn 基合金不同,Ni–Mn–Ti 基 Heusler 合金的d–d轨道杂化取代p–d 轨道杂化,提高了合金的塑韧性,解决了传统Ni–Mn 基合金固有脆性大、力学性能差的问题。由于卓越的机械性能和相变过程中较高的熵变,Ni–Mn–Ti 基合金在超弹性和弹热制冷方面具有广阔的研究前景。Cu掺杂和Cu–Co共掺Ni–Mn–Ti 合金的研究很少,本文旨在为Ni–Mn–Ti 基合金的成分设计提供理论支持。本文通过第一性原理计算对Ni2Mn1.5−xCuxTi0.5 (x = 0.125, 0.25, 0.375, 0.5) 和 Ni2−yCoyMn1.5−xCuxTi0.5 [(x = 0.125, y = 0.125, 0.25, 0.375, 0.5) 和 (x = 0.125, 0.25, 0.375, y = 0.625)]合金系的马氏体相变,力学性能和磁性能进行了系统研究。Ni–(Co)–Mn–Cu–Ti合金马氏体的形成能始终低于奥氏体的形成能,表明合金均能发生马氏体相变。Ni2Mn1.5−xCuxTi0.5 和 Ni2−yCoyMn1.5−xCuxTi0.5 (y < 0.625)合金的奥氏体和非调制马氏体都是反铁磁态的,当y = 0.625时, Ni2−yCoyMn1.5−xCuxTi0.5合金的奥氏体由反铁磁态转变为铁磁态,而马氏体保持反铁磁态,马氏体相变时合金会伴随磁性的突变,即发生磁—结构耦合现象,这是合金具有磁热效应的物理基础。掺Cu能降低Ni–(Co)–Mn–Ti合金的热滞后和各向异性。提高Mn的含量并且降低Ti的含量能提高Ni–Mn–Cu–Ti合金抗剪切和抗正应力的能力,但会降低韧性。就延展性而言,Ni–Mn–Cu–Ti 和 Ni–Co–Mn–Ti合金强于Cu–Co共掺合金。
  • Research Article

    First-principles calculations of Ni–(Co)–Mn–Cu–Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

    + Author Affiliations
    • The martensitic transformation, mechanical, and magnetic properties of the Ni2Mn1.5−xCuxTi0.5 (x = 0.125, 0.25, 0.375, 0.5) and Ni2−yCoyMn1.5−xCuxTi0.5 [(x = 0.125, y = 0.125, 0.25, 0.375, 0.5) and (x = 0.125, 0.25, 0.375, y = 0.625)] alloys were systematically studied by the first-principles calculations. For the formation energy, the martensite is smaller than the austenite, the Ni–(Co)–Mn–Cu–Ti alloys studied in this work can undergo martensitic transformation. The austenite and non-modulated (NM) martensite always present antiferromagnetic state in the Ni2Mn1.5−xCuxTi0.5 and Ni2−yCoyMn1.5−xCuxTi0.5 (y < 0.625) alloys. When y = 0.625 in the Ni2−yCoyMn1.5−xCuxTi0.5 series, the austenite presents ferromagnetic state while the NM martensite shows antiferromagnetic state. Cu doping can decrease the thermal hysteresis and anisotropy of the Ni–(Co)–Mn–Ti alloy. Increasing Mn and decreasing Ti content can improve the shear resistance and normal stress resistance, but reduce the toughness in the Ni–Mn–Cu–Ti alloy. And the ductility of the Co–Cu co-doping alloy is inferior to that of the Ni–Mn–Cu–Ti and Ni–Co–Mn–Ti alloys. The electronic density of states was studied to reveal the essence of the mechanical and magnetic properties.
    • loading
    • [1]
      M. Callisti and T. Polcar, Microstructural evolution of nanometric Ti(NiCu)2 precipitates in annealed Ni–Ti–Cu thin films, Vacuum, 117(2015), p. 1. doi: 10.1016/j.vacuum.2015.03.028
      [2]
      D.Y. Cong, W.X. Xiong, A. Planes, et al., Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys, Phys. Rev. Lett., 122(2019), No. 25, art. No. 255703. doi: 10.1103/PhysRevLett.122.255703
      [3]
      J.D. Navarro-García, J.L. Sánchez Llamazares, and J.P.Camarillo-Garcia, Synthesis of highly dense spark plasma sintered magnetocaloric Ni–Mn–Sn alloys from melt-spun ribbons, Mater. Lett., 295(2021), art. No. 129857. doi: 10.1016/j.matlet.2021.129857
      [4]
      W.T. Chiu, P. Sratong-on, M. Tahara, V. Chernenko, and H. Hosoda, Large magnetostrains of Ni–Mn–Ga/silicone composite containing system of oriented 5M and 7M martensitic particles, Scripta Mater., 207(2022), art. No. 114265. doi: 10.1016/j.scriptamat.2021.114265
      [5]
      J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater., 11(2012), No. 7, p. 620. doi: 10.1038/nmat3334
      [6]
      A. Biesiekierski, J.X. Lin, Y.C. Li, D.H. Ping, Y. Yamabe-Mitarai, and C.E. Wen, Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti–Nb–Ru alloys, Acta Biomater., 48(2017), p. 461. doi: 10.1016/j.actbio.2016.09.012
      [7]
      X.L.Yang and J.X. Shang, Electronic mechanism of martensitic transformation in Nb-doped NiTi alloys: A first-principles investigation, ACS Omega, 6(2021), No. 34, p. 22033. doi: 10.1021/acsomega.1c02601
      [8]
      R. Kainuma, Y. Imano, W. Ito, et al., Magnetic-field-induced shape recovery by reverse phase transformation, Nature, 439(2006), No. 7079, p. 957. doi: 10.1038/nature04493
      [9]
      S.Y. Yu, Z.X. Cao, L. Ma, et al., Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys, Appl. Phys. Lett., 91(2007), No. 10, art. No. 102507. doi: 10.1063/1.2783188
      [10]
      M. Wuttig, L. Liu, K. Tsuchiya, and R.D. James, Occurrence of ferromagnetic shape memory alloys (invited), J. Appl. Phys., 87(2000), No. 9, p. 4707. doi: 10.1063/1.373135
      [11]
      J.A. Monroe, I. Karaman, B. Basaran, et al., Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys, Acta Mater., 60(2012), No. 20, p. 6883. doi: 10.1016/j.actamat.2012.07.040
      [12]
      F.X. Hu, B.G. Shen, J.R. Sun, and G.H. Wu, Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal, Phys. Rev. B, 64(2001), No. 13, art. No. 132412. doi: 10.1103/PhysRevB.64.132412
      [13]
      J. Du, Q. Zheng, W.J. Ren, W.J. Feng, X.G. Liu, and Z.D. Zhang, Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb, J. Phys. D: Appl. Phys., 40(2007), No. 18, p. 5523. doi: 10.1088/0022-3727/40/18/001
      [14]
      G.Y. Zhang, D. Li, C. Liu, et al., Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy, Scripta Mater., 201(2021), art. No. 113947. doi: 10.1016/j.scriptamat.2021.113947
      [15]
      H. Wang, D. Li, G. Zhang, et al., Highly sensitive elastocaloric response in a directionally solidified Ni50Mn33In15.5Cu1.5 alloy with strong A preferred orientation, Intermetallics, 140(2022), art. No. 107379. doi: 10.1016/j.intermet.2021.107379
      [16]
      Y.J. Huang, Q.D. Hu, N.M. Bruno, et al., Giant elastocaloric effect in directionally solidified Ni–Mn–In magnetic shape memory alloy, Scripta Mater., 105(2015), p. 42. doi: 10.1016/j.scriptamat.2015.04.024
      [17]
      Z.Y. Wei, W. Sun, Q. Shen, et al., Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography, Appl. Phys. Lett., 114(2019), No. 10, art. No. 101903. doi: 10.1063/1.5077076
      [18]
      H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180. doi: 10.1016/j.matdes.2019.108180
      [19]
      Z.Y. Wei, E.K. Liu, J.H. Chen, et al., Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases, Appl. Phys. Lett., 107(2015), No. 2, art. No. 022406. doi: 10.1063/1.4927058
      [20]
      K. Liu, S.C. Ma, C.C. Ma, et al., Martensitic transformation and giant magneto-functional properties in all-d-metal Ni–Co–Mn–Ti alloy ribbons, J. Alloys Compd., 790(2019), p. 78. doi: 10.1016/j.jallcom.2019.03.173
      [21]
      Z.Q. Guan, X.J. Jiang, J.L. Gu, et al., Large magnetocaloric effect and excellent mechanical properties near room temperature in Ni–Co–Mn–Ti non-textured polycrystalline alloys, Appl. Phys. Lett., 119(2021), No. 5, art. No. 051904. doi: 10.1063/5.0058609
      [22]
      A. Taubel, B. Beckmann, L. Pfeuffer, et al., Tailoring magnetocaloric effect in all-d-metal Ni–Co–Mn–Ti Heusler alloys: A combined experimental and theoretical study, Acta Mater., 201(2020), p. 425. doi: 10.1016/j.actamat.2020.10.013
      [23]
      X.Z. Liang, J. Bai, J.L. Gu, et al., Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2−xMn1.5In0.5Co alloys, J. Mater. Sci. Technol., 44(2020), p. 31. doi: 10.1016/j.jmst.2020.01.034
      [24]
      J. Hafner, Atomic-scale computational materials science, Acta Mater., 48(2000), No. 1, p. 71. doi: 10.1016/S1359-6454(99)00288-8
      [25]
      G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758. doi: 10.1103/PhysRevB.59.1758
      [26]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
      [27]
      G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B, 59(1999), No. 13, p. 8551. doi: 10.1103/PhysRevB.59.8551
      [28]
      J.P. Perdew, K. Burke, and M.Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [29]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [30]
      Y. Song, X. Chen, V. Dabade, T.W. Shield, and R.D. James, Enhanced reversibility and unusual microstructure of a phase-transforming material, Nature, 502(2013), No. 7469, p. 85. doi: 10.1038/nature12532
      [31]
      J. Cui, Y.S. Chu, O.O. Famodu, et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater., 5(2006), No. 4, p. 286. doi: 10.1038/nmat1593
      [32]
      Z.G. Wu, Z.H. Liu, H. Yang, Y. Liu, and G. Wu, Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40−xIn10Cox polycrystalline alloys, Intermetallics, 19(2011), No. 12, p. 1839. doi: 10.1016/j.intermet.2011.08.001
      [33]
      Z.B Li, J.J. Yang, D. Li, et al., Tuning the reversible magnetocaloric effect in Ni–Mn–In-based alloys through Co and Cu Co-doping, Adv. Electron. Mater., 5(2019), No. 3, art. No. 1800845. doi: 10.1002/aelm.201800845
      [34]
      M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni50Mn34In16, J. Magn. Magn. Mater., 368(2014), p. 191. doi: 10.1016/j.jmmm.2014.05.021
      [35]
      S. Saritaş, M. Kaya, İ. Dinçer, and Y. Elerman, The structural, magnetic, and magnetocaloric properties of Ni43Mn46−xCuxIn11 (x = 0, 0.9, 1.3, and 2.3) Heusler alloys, Metall. Mater. Trans. A, 48(2017), No. 10, p. 5068. doi: 10.1007/s11661-017-4191-x
      [36]
      Z. Yang, D.Y. Cong, Y. Yuan, et al., Large room-temperature elastocaloric effect in a bulk polycrystalline Ni–Ti–Cu–Co alloy with low isothermal stress hysteresis, Appl. Mater. Today, 21(2020), art. No. 100844. doi: 10.1016/j.apmt.2020.100844
      [37]
      Z.Q. Guan, J. Bai, J.L. Gu, et al., First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni–Mn–Ti Heusler alloys, J. Mater. Sci. Technol., 68(2021), p. 103. doi: 10.1016/j.jmst.2020.08.002
      [38]
      C.C. Xiong, J. Bai, Y.S. Li, et al., First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni–Mn–Ti alloy, Acta Metall. Sin. Engl. Lett., 35(2022), No. 7, p. 1175. doi: 10.1007/s40195-021-01360-9
      [39]
      Z.Q. Guan, J. Bai, Y. Zhang, et al., Revealing essence of magnetostructural coupling of Ni–Co–Mn–Ti alloys by first-principles calculations and experimental verification, Rare Met., 41(2022), No. 6, p. 1933. doi: 10.1007/s12598-021-01947-2
      [40]
      Z. Muthui, R. Musembi, J. Mwabora, and A. Kashyap, Perpendicular magnetic anisotropy in nearly fully compensated ferrimagnetic Heusler alloy Mn0.75Co1.25VIn: An ab initio study, J. Magn. Magn. Mater., 442(2017), p. 343. doi: 10.1016/j.jmmm.2017.06.102
      [41]
      R.V.S. Prasad, M. Manivel Raja, and G. Phanikumar, Microstructure and magnetic properties of rapidly solidified Ni2(Mn,Fe)Ga Heusler alloys, Adv. Mater. Res., 74(2009), p. 215. doi: 10.4028/www.scientific.net/AMR.74.215
      [42]
      Z.N. Ni, X.M. Guo, X.T. Liu, Y.Y, Jiao, F.B. Meng, and H.Z. Luo, Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5, J. Alloys Compd., 775(2019), p. 427. doi: 10.1016/j.jallcom.2018.10.115
      [43]
      J. Bai, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X = Mn, Fe, Co) from first-principles calculations, J. Appl. Phys., 109(2011), No. 1, art. No. 014908. doi: 10.1063/1.3524488
      [44]
      J. Bai, J.L. Wang, S.F. Shi, et al., Complete martensitic transformation sequence and magnetic properties of non-stoichiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations, J. Magn. Magn. Mater., 473(2019), p. 360. doi: 10.1016/j.jmmm.2018.10.079

    Catalog


    • /

      返回文章
      返回