留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  380
  • HTML全文浏览量:  121
  • PDF下载量:  18
  • 被引次数: 0
Jian Wu, Heguo Zhu,  and Zonghan Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 707-714. https://doi.org/10.1007/s12613-022-2567-4
Cite this article as:
Jian Wu, Heguo Zhu,  and Zonghan Xie, Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 707-714. https://doi.org/10.1007/s12613-022-2567-4
引用本文 PDF XML SpringerLink
研究论文

Nb合金化Ni0.6CoFe1.4合金的强塑性协同

  • 通讯作者:

    朱和国    E-mail: zhg1200@njust.edu.cn

文章亮点

  • (1) 系统地研究了Nb含量对Ni0.6CoFe1.4Nbx中熵合金微观组织的影响规律
  • (2) 详细地讨论了Nb含量对Ni0.6CoFe1.4Nbx中熵合金力学性能的影响
  • (3) 优化Nb含量可以获得塑韧协同的Ni0.6CoFe1.4Nbx中熵合金
  • 中熵合金具有许多优于传统合金的特殊性能受到了广泛关注。然而设计出具有高强度和可接受塑性的体心立方型中熵合金仍然是一个巨大挑战。本文拟通过在BCC基体中引入面心立方相(FCC)形成双相微观结构来解决体心立方型中熵合金的强度和塑性平衡问题。采用真空感应熔炼法制备了Ni0.6CoFe1.4Nbxx = 0、0.05、0.08、0.10和0.15)中熵合金,并研究了Nb元素对Ni0.6CoFe1.4合金的晶体结构、微观组织和室温力学性能的影响。微观结构表明,该合金由BCC和FCC双相组成,微观形貌为网状结构,其中BCC相是该合金体系中的主要相。随着Nb含量的增加,合金的强度先减小后增大,塑性先增大后减小。此外,Ni0.6CoFe1.4Nbx合金的断裂机制由韧性断裂向脆性断裂转变。Ni0.6CoFe1.4Nb0.10 合金显示出最佳的强度和塑性组合,即相比较于Ni0.6CoFe1.4合金,Ni0.6CoFe1.4Nb0.10合金的塑性增加了两倍(11.6%),并展现出最高的极限拉伸强度(869.8 MPa)。合金强度提高归因于固溶强化、沉淀硬化效应和界面强化效应的协同作用。
  • Research Article

    Strength and ductility synergy of Nb-alloyed Ni0.6CoFe1.4 alloys

    + Author Affiliations
    • Designing strong, yet ductile, and body-centered cubic (BCC) medium-entropy alloys (MEAs) remains to be a challenge nowadays. In this study, the strength–ductility trade-off of Ni0.6CoFe1.4 MEAs was tackled via introducing a BCC + face-centered cubic (FCC) dual-phase microstructure. Ni0.6CoFe1.4Nbx (x = 0, 0.05, 0.08, 0.10, and 0.15, in molar ratio) MEAs were prepared using vacuum induction melting. Results show that the new alloy is composed of BCC plus FCC dual phases featuring a network-like structure, and the BCC phase is the main phase in this alloy system. Moreover, the Nb0.10 MEA shows high strength and respectable tensile ductility, representing the best combination of the strength and fracture elongation among the alloys studied here. The remarkable strength of the Nb0.10 MEA is attributed to the combined effect of the solid solution strengthening, the precipitation hardening effect and the interface strengthening effect.
    • loading
    • [1]
      Z. Shojaei, G.R. Khayati, and E. Darezereshki, Review of electrodeposition methods for the preparation of high-entropy alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1683. doi: 10.1007/s12613-022-2439-y
      [2]
      E.P. George, D. Raabe, and R.O. Ritchie, High-entropy alloys, Nat. Rev. Mater., 4(2019), No. 8, p. 515. doi: 10.1038/s41578-019-0121-4
      [3]
      C.Y. Cheng, Y.C. Yang, Y.Z. Zhong, Y.Y. Chen, T. Hsu, and J.W.Yeh, Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys, Curr. Opin. Solid State Mater. Sci., 21(2017), No. 6, p. 299. doi: 10.1016/j.cossms.2017.09.002
      [4]
      W. Jiang, Y.T. Zhu, and Y.H. Zhao, Mechanical properties and deformation mechanisms of heterostructured high-entropy and medium-entropy alloys: A review, Front. Mater, 8(2022), p. 792359. doi: 10.3389/fmats.2021.792359
      [5]
      N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, and M.A.Tikhonovsky, Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy, Mater. Lett., 142(2015), p. 153. doi: 10.1016/j.matlet.2014.11.162
      [6]
      O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K.Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758. doi: 10.1016/j.intermet.2010.05.014
      [7]
      B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, and M.Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, J. Alloys Compd., 624(2015), p. 270. doi: 10.1016/j.jallcom.2014.11.012
      [8]
      F. He, D. Chen, B. Han, et al., Design of D022 superlattice with superior strengthening effect in high entropy alloys, Acta Mater., 167(2019), p. 275. doi: 10.1016/j.actamat.2019.01.048
      [9]
      W.P. Li, T.H. Chou, T. Yang, et al., Design of ultrastrong but ductile medium-entropy alloy with controlled precipitations and heterogeneous grain structures, Appl. Mater. Today, 23(2021), art. No. 101037. doi: 10.1016/j.apmt.2021.101037
      [10]
      T. Xiang, Z.Y. Cai, P. Du, K. Li, Z.W. Zhang, and G.Q. Xie, Dual phase equal-atomic NbTaTiZr high-entropy alloy with ultra-fine grain and excellent mechanical properties fabricated by spark plasma sintering, J. Mater. Sci. Technol., 90(2021), p. 150. doi: 10.1016/j.jmst.2021.03.024
      [11]
      K.R. Lim, H.J. Kwon, J.H. Kang, J.W. Won, and Y.S. Na, A novel ultra-high-strength duplex Al–Co–Cr–Fe–Ni high-entropy alloy reinforced with body-centered-cubic ordered-phase particles, Mater. Sci. Eng. A, 771(2020), art. No. 138638. doi: 10.1016/j.msea.2019.138638
      [12]
      Y. Ji, L. Zhang, X. Lu, et al., Microstructural optimization of FexCrNiAl0.5Ti0.5 high entropy alloys toward high ductility, Appl. Phys. Lett., 119(2021), No. 14, art. No. 141903. doi: 10.1063/5.0060678
      [13]
      A. Fu, B. Liu, S.H. Xu, et al., Mechanical properties and microstructural evolution of a novel (FeCoNi)86.93Al6.17Ti6.9 medium entropy alloy fabricated via powder metallurgy technique, J. Alloys Compd., 860(2021), art. No. 158460. doi: 10.1016/j.jallcom.2020.158460
      [14]
      N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332. doi: 10.1007/s12613-020-2178-x
      [15]
      H. Liang, H.W. Yao, D.X. Qiao, et al., Microstructures and wear resistance of AlCrFeNi2W0.2Nbx high-entropy alloy coatings prepared by laser cladding, J. Therm. Spray Tech., 28(2019), No. 6, p. 1318. doi: 10.1007/s11666-019-00901-0
      [16]
      R. Li, J. Ren, G.J. Zhang, et al., Novel (CoFe2NiV0.5Mo0.2)100−xNbx eutectic high-entropy alloys with excellent combination of mechanical and corrosion properties, Acta Metall. Sin. Engl. Lett., 33(2020), No. 8, p. 1046. doi: 10.1007/s40195-020-01072-6
      [17]
      W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60(2015), p. 1. doi: 10.1016/j.intermet.2015.01.004
      [18]
      D.Y. Lin, N.N. Zhang, B. He, et al., Structural evolution and performance changes in FeCoCrNiAlNbx high-entropy alloy coatings cladded by laser, J. Therm. Spray Technol., 26(2017), No. 8, p. 2005.
      [19]
      Q.Q. Wei, X.D. Xu, G.M. Li, et al., A carbide-reinforced Re0.5MoNbW(TaC)0.8 eutectic high-entropy composite with outstanding compressive properties, Scripta Mater., 200(2021), art. No. 113909. doi: 10.1016/j.scriptamat.2021.113909
      [20]
      B.L. Bramfitt, The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metall. Trans., 1(1970), No. 7, p. 1987. doi: 10.1007/BF02642799
      [21]
      K.X. Zhou, J.J. Li, L.L. Wang, H.O. Yang, Z.J. Wang, and J.C. Wang, Direct laser deposited bulk CoCrFeNiNbx high entropy alloys, Intermetallics, 114(2019), art. No. 106592. doi: 10.1016/j.intermet.2019.106592
      [22]
      P.P. Li, A.D. Wang, and C.T. Liu, Composition dependence of structure, physical and mechanical properties of FeCoNi(MnAl)x high entropy alloys, Intermetallics, 87(2017), p. 21. doi: 10.1016/j.intermet.2017.04.007
      [23]
      Y.H. Guo, M.Y. Li, P. Li, et al., Microstructure and mechanical properties of oxide dispersion strengthened FeCoNi concentrated solid solution alloys, J. Alloys Compd., 820(2020), art. No. 153104. doi: 10.1016/j.jallcom.2019.153104
      [24]
      H. Wu, S.R. Huang, S.M. Zhao, et al., Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles, Intermetallics, 127(2020), art. No. 106983. doi: 10.1016/j.intermet.2020.106983
      [25]
      J.F. Zhang, T. Jia, H. Qiu, H.G. Zhu, and Z.H. Xie, Effect of cooling rate upon the microstructure and mechanical properties of in situ TiC reinforced high entropy alloy CoCrFeNi, J. Mater. Sci. Technol., 42(2020), p. 122. doi: 10.1016/j.jmst.2019.12.002
      [26]
      Y.C. Zhang, Y.R. Yang, J.F. Zhang, J.W. Li, H.G. Zhu, and Z.H. Xie, Effect of Ti and B additions on the microstructure and properties of FeCoCrNi high entropy alloys prepared by hot pressing, Powder Metall., 65(2022), No. 4, p. 347. doi: 10.1080/00325899.2022.2029302
      [27]
      J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [28]
      Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10(2008), No. 6, p. 534. doi: 10.1002/adem.200700240
      [29]
      S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys., 109(2011), No. 10, art. No. 103505. doi: 10.1063/1.3587228
      [30]
      W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, and Z.P. Lu, The phase competition and stability of high-entropy alloys, JOM, 66(2014), No. 10, p. 1973. doi: 10.1007/s11837-014-1119-4
      [31]
      S.H. Kuang, F. Zhou, W.C. Liu, and Q.B. Liu, Al2O3/MC particles reinforced MoFeCrTiWNbx high-entropy-alloy coatings prepared by laser cladding, Surf. Eng., 38(2022), No. 2, p. 158. doi: 10.1080/02670844.2022.2067730
      [32]
      B. Chanda and J. Das, Composition dependence on the evolution of nanoeutectic in CoCrFeNiNbx (0.45≤x≤0.65) high entropy alloys, Adv. Eng. Mater., 20(2018), No. 4, art. No. 1700908. doi: 10.1002/adem.201700908
      [33]
      A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817. doi: 10.2320/matertrans.46.2817
      [34]
      Q.X. Nie, H. Liang, D.X. Qiao, Z.X. Qi, and Z.Q. Cao, Microstructures and mechanical properties of multi-componentAlxCrFe2Ni2Mo0.2 high-entropy alloys, Acta Metall. Sin. Engl. Lett., 33(2020), No. 8, p. 1135. doi: 10.1007/s40195-020-01085-1
      [35]
      M. Zhang, J.X. Hou, H.J. Yang, et al., Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341. doi: 10.1007/s12613-020-2084-2
      [36]
      R. Fan, L.P. Wang, L.L. Zha, et al., Synergistic effect of Nb and Mo alloying on the microstructure and mechanical properties of CoCrFeNi high entropy alloy, Mater. Sci. Eng. A, 829(2022), art. No. 142153. doi: 10.1016/j.msea.2021.142153
      [37]
      Y. Dong, X.X. Gao, Y.P. Lu, T.M. Wang, and T.J. Li, A multi-component AlCrFe2Ni2 alloy with excellent mechanical properties, Mater. Lett., 169(2016), p. 62. doi: 10.1016/j.matlet.2016.01.096
      [38]
      J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q.Hu, Microstructures and compressive properties of multicomponent AlCoCrFeNiMox alloys, Mater. Sci. Eng. A, 527(2010), No. 26, p. 6975. doi: 10.1016/j.msea.2010.07.028

    Catalog


    • /

      返回文章
      返回