留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(15)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  802
  • HTML全文浏览量:  306
  • PDF下载量:  61
  • 被引次数: 0
Lingzhi Xie, Zhigang Xu, Yunzhe Qi, Jinrong Liang, Peng He, Qiang Shen,  and Chuanbin Wang, Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 917-929. https://doi.org/10.1007/s12613-022-2568-3
Cite this article as:
Lingzhi Xie, Zhigang Xu, Yunzhe Qi, Jinrong Liang, Peng He, Qiang Shen,  and Chuanbin Wang, Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 917-929. https://doi.org/10.1007/s12613-022-2568-3
引用本文 PDF XML SpringerLink
研究论文

球磨时间对Fe–Mn–Al多孔钢显微结构和压缩性能的影响

  • 通讯作者:

    徐志刚    E-mail: zhigangxu@whut.edu.cn

文章亮点

  • (1) 利用元素粉末烧结和锰的升华效应制备了高孔隙率的多孔钢。
  • (2) 揭示了不同球磨时间对粉末形貌特征和粒径变化的影响规律。
  • (3) 阐明了多孔钢的微观结构和压缩性能随球磨时间的变化规律。
  • 多孔钢具有较高的机械力学性能、优异的能量吸收能力和较强的耐腐蚀性能等诸多结构功能一体化特性,已成为多孔金属材料领域的研究热点。目前,多孔钢的制备多以不锈钢和碳钢为母材,其力学性能受到一定的限制,影响了其结构及功能特性的发挥。与当前广泛采用的上述母材相比,高锰铝高强钢具有更加优异的轻质高强特性,能够显著提升多孔钢的使役性能,已成为一种重要的多孔钢母材。作为一种加工周期短和制备温度低的近净成形方法,粉末冶金能够获得成分可调、孔隙特征可控的多孔金属制品,是一种广泛采用的多孔钢制备技术。粉末细化是改变多孔钢微观结构和提升其力学性能的重要方法,而高能球磨是实现粉末细化的一种重要途径。当前,制备多孔钢的原料粉末多为预合金钢粉末,预合金粉末存在难以实时调整化学成分以及原料制备成本高等突出问题。为此,本文首次提出以Fe、Mn、Al和C等元素粉末替代现有的预合金粉末,经过一定周期的高能球磨后,采用真空烧结两步原位造孔的全新方法成功制备了高孔隙的高锰铝多孔钢。在此基础上,本文重点分析和探讨了球磨时间对混合粉末及其多孔钢的微观结构和压缩性能的影响,为多孔钢的微结构调整和性能优化提供了重要的理论基础。本文的研究结果表明,随着球磨时间的增加,混合粉末的尺寸不断减小,Fe颗粒的形貌逐渐向薄片状转变。在640℃的低温预烧结阶段,样品中的主要相为α-Fe、α-Mn和Al,以及少量的Fe2Al5和Al8Mn5等金属间化合物;当烧结温度升高到1200℃时,样品的表面以α-Fe为主,中心为γ-Fe。此外,研究还发现,随着球磨时间的增加,Mn的升华量逐渐减少,这是引起多孔钢的孔隙率下降的一个重要因素。在压缩性能方面,所制多孔钢宏观裂纹萌生时的应变及其应力都随球磨时间的延长而不断增加。
  • Research Article

    Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel

    + Author Affiliations
    • In the present work, Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time, and the porous high-Mn and high-Al steel was fabricated by powder sintering. The results indicated that the powder size significantly decreased, and the morphology of the Fe powder tended to be increasingly flat as the milling time increased. However, the prolonged milling duration had limited impact on the phase transition of the powder mixture. The main phases of all the samples sintered at 640°C were α-Fe, α-Mn and Al, and a small amount of Fe2Al5 and Al8Mn5. When the sintering temperature increased to 1200°C, the phase composition was mainly comprised of γ-Fe and α-Fe. The weight loss fraction of the sintered sample decreased with milling time, i.e., 8.3wt% after 20 h milling compared to 15.3wt% for 10 h. The Mn depletion region (MDR) for the 10, 15, and 20 h milled samples was about 780, 600, and 370 μm, respectively. The total porosity of samples sintered at 640°C decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder. After sintering at 1200°C, the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%, respectively. The compressive strength and ductility of the 1200°C sintered porous steel increased as the milling time increased.
    • loading
    • [1]
      A.C. Kaya, P. Zaslansky, M. Ipekoglu, and C. Fleck, Strain hardening reduces energy absorption efficiency of austenitic stainless steel foams while porosity does not, Mater. Des., 143(2018), p. 297. doi: 10.1016/j.matdes.2018.02.009
      [2]
      Z.G. Xu, J.H. Du, C. Zhuang, S.Y. Huang, C.B. Wang, and Q. Shen, Evolution of aluminum particle-involved phase transformation and pore structure in an elemental Fe–Mn–Al–C powder compact during vacuum sintering, Vacuum, 175(2020), p. 109289. doi: 10.1016/j.vacuum.2020.109289
      [3]
      M. Su, Q. Zhou, and H. Wang, Mechanical properties and constitutive models of foamed steels under monotonic and cyclic loading, Constr. Build. Mater., 231(2020), p. 116959. doi: 10.1016/j.conbuildmat.2019.116959
      [4]
      Z.G. Xu, J.R. Liang, Y.M. Chen, W.J. Li, C.B. Wang, and Q. Shen, Sintering of a porous steel with high-Mn and high-Al content in vacuum, Vacuum, 196(2022), p. 110746. doi: 10.1016/j.vacuum.2021.110746
      [5]
      I. Mutlu and E.Oktay, Corrosion behaviour and microstructure evolution of 17-4 PH stainless steel foam, Corros. Rev., 30(2012), No. 3-4, p. 125. doi: 10.1515/corrrev-2011-0037
      [6]
      S. Bobaru, V. Rico-Gavira, A. García-Valenzuela, C. López-Santos, and A.R.González-Elipe, Electron beam evaporated vs. magnetron sputtered nanocolumnar porous stainless steel: Corrosion resistance, wetting behavior and anti-bacterial activity, Mater. Today Commun., 31(2022), p. 103266. doi: 10.1016/j.mtcomm.2022.103266
      [7]
      X.Q. Ni, D.C. Kong, Y. Wen, et al., Anisotropy in mechanical properties and corrosion resistance of 316L stainless steel fabricated by selective laser melting, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 319. doi: 10.1007/s12613-019-1740-x
      [8]
      A. Rabiei, K. Karimpour, D. Basu, and M.Janssens, Steel-steel composite metal foam in simulated pool fire testing, Int. J. Therm. Sci., 153(2020), p. 106336. doi: 10.1016/j.ijthermalsci.2020.106336
      [9]
      C.H. Wang, F.C. Jiang, S.Q. Shao, T.M. Yu, and C.H. Guo, Acoustic properties of 316L stainless steel hollow sphere composites fabricated by pressure casting, Metals, 10(2020), No. 8, p. 1047. doi: 10.3390/met10081047
      [10]
      X.B. Xu, P.S. Liu, G.F. Chen, and C.P. Li, Sound absorption performance of highly porous stainless steel foam with reticular structure, Met. Mater. Int., 27(2021), No. 9, p. 3316. doi: 10.1007/s12540-020-00701-0
      [11]
      H. Jain, R. Kumar, G. Gupta, and D.P. Mondal, Microstructure, mechanical and EMI shielding performance in open cell austenitic stainless steel foam made through PU foam template, Mater. Chem. Phys., 241(2020), p. 122273. doi: 10.1016/j.matchemphys.2019.122273
      [12]
      T.Y. Lim, W. Zhai, X. Song, et al., Effect of slurry composition on the microstructure and mechanical properties of SS316L open-cell foam, Mater. Sci. Eng. A, 772(2020), p. 138798. doi: 10.1016/j.msea.2019.138798
      [13]
      Y. Guo, M.C. Zhao, B. Xie, et al., In vitro corrosion resistance and antibacterial performance of novel Fe–xCu biomedical alloys prepared by selective laser melting, Adv. Eng. Mater., 23(2021), No. 4, p. 2001000. doi: 10.1002/adem.202001000
      [14]
      S. Yiatros, O. Marangos, R.A. Votsis, and F.P. Brennan, Compressive properties of granular foams of adhesively bonded steel hollow sphere blocks, Mech. Res. Commun., 94(2018), p. 13. doi: 10.1016/j.mechrescom.2018.08.005
      [15]
      H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257. doi: 10.1007/s12613-020-1995-2
      [16]
      C. Mapelli, D. Mombelli, A. Gruttadauria, S. Barella, and E.M. Castrodeza, Performance of stainless steel foams produced by infiltration casting techniques, J. Mater. Process. Technol., 213(2013), No. 11, p. 1846. doi: 10.1016/j.jmatprotec.2013.05.010
      [17]
      K. Alvarez, K. Sato, S.K. Hyun, and H. Nakajima, Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications, Mater. Sci. Eng. C, 28(2008), No. 1, p. 44. doi: 10.1016/j.msec.2007.01.010
      [18]
      C. Garcia-Cabezon, C. Garcia-Hernandez, M.L. Rodriguez-Mendez, and F.Martin-Pedrosa, A new strategy for corrosion protection of porous stainless steel using polypyrrole films, J. Mater. Sci. Technol., 37(2020), p. 85. doi: 10.1016/j.jmst.2019.05.071
      [19]
      M. Mokhtari, T. Wada, C. Le Bourlot, et al., Corrosion resistance of porous ferritic stainless steel produced by liquid metal dealloying of Incoloy 800, Corros. Sci., 166(2020), No. 7, p. 108468.
      [20]
      Y.B. Ren, J. Li, and K. Yang, Preliminary study on porous high-manganese 316L stainless steel through physical vacuum dealloying, Acta Metall. Sin., 30(2017), No. 8, p. 731. doi: 10.1007/s40195-017-0600-9
      [21]
      D.C. Kong, X.Q. Ni, C.F. Dong, et al., Anisotropy in the microstructure and mechanical property for the bulk and porous 316L stainless steel fabricated via selective laser melting, Mater. Lett., 235(2019), p. 1. doi: 10.1016/j.matlet.2018.09.152
      [22]
      Y. Zhu, G.L. Lin, M.M. Khonsari, J.H. Zhang, and H.Y. Yang, Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting, J. Mater. Process. Technol., 262(2018), p. 41. doi: 10.1016/j.jmatprotec.2018.06.027
      [23]
      H.Y. Chen, D.D. Gu, Q. Ge, et al., Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 462. doi: 10.1007/s12613-020-2133-x
      [24]
      K. Li, J.B. Zhan, T.B. Yang, et al., Homogenization timing effect on microstructure and precipitation strengthening of 17-4PH stainless steel fabricated by laser powder bed fusion, Addit. Manuf., 52(2022), art. No. 102672. doi: 10.1016/j.addma.2022.102672
      [25]
      Z.Y. Liu, S.J. Xu, B.L. Xiao, P. Xue, W.G. Wang, and Z.Y. Ma, Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites, Composites Part A, 43(2012), No. 12, p. 2161. doi: 10.1016/j.compositesa.2012.07.026
      [26]
      F. Ghadami, A.S.R. Aghdam, and S. Ghadami, Characterization of MCrAlY/nano-Al2O3 nanocomposite powder produced by high-energy mechanical milling as feedstock for high-velocity oxygen fuel spraying deposition, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1534. doi: 10.1007/s12613-020-2113-1
      [27]
      S.A. Hewitt and K.A. Kibble, Effects of ball milling time on the synthesis and consolidation of nanostructured WC–Co composites, Int. J. Refract. Met. Hard Mater., 27(2009), No. 6, p. 937. doi: 10.1016/j.ijrmhm.2009.05.006
      [28]
      A. Nouri, P.D. Hodgson, and C. Wen, Effect of ball-milling time on the structural characteristics of biomedical porous Ti–Sn–Nb alloy, Mater. Sci. Eng. C, 31(2011), No. 5, p. 921. doi: 10.1016/j.msec.2011.02.011
      [29]
      R. Raimundo, R. Reinaldo, N. Câmara, et al., Al2O3–10wt% Fe composite prepared by high energy ball milling: Structure and magnetic properties, Ceram. Int., 47(2021), No. 1, p. 984. doi: 10.1016/j.ceramint.2020.08.212
      [30]
      C. Garcia-Cabezon, Y. Blanco, M. Rodriguez-Mendez, and F. Martin-Pedrosa, Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying, J. Alloys Compd., No.(2017), p. 46.
      [31]
      N. Bekoz and E. Oktay, The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams, Mater. Sci. Eng. A, 612(2014), p. 387. doi: 10.1016/j.msea.2014.06.064
      [32]
      G. Castro, S.R. Nutt, and X.W. Chen, Compression and low-velocity impact behavior of aluminum syntactic foam, Mater. Sci. Eng. A, 578(2013), p. 222. doi: 10.1016/j.msea.2013.04.081
      [33]
      K. Kato, A. Yamamoto, S. Ochiai, et al., Cytocompatibility and mechanical properties of novel porous 316L stainless steel, Mater. Sci. Eng. C, 33(2013), No. 5, p. 2736. doi: 10.1016/j.msec.2013.02.038
      [34]
      D.P. Mondal, H. Jain, S. Das, and A.K. Jha, Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder, Mater. Des., 88(2015), p. 430. doi: 10.1016/j.matdes.2015.09.020
      [35]
      K.G. Chin, H.J. Lee, J.H. Kwak, J.Y. Kang, and B.J. Lee, Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels, J. Alloys Compd., 505(2010), No. 1, p. 217. doi: 10.1016/j.jallcom.2010.06.032
      [36]
      Z.G. Xu, J.R. Liang, and J.H. Du, The microstructure and compressive properties of a sintered Fe–Mn–Al porous steel produced by blended elemental powder mixture, Int. J. Mod. Phys. B, 36(2022), No. 12-13, p. 2240058.
      [37]
      C.B. Zhuang, Z.G. Xu, S.Y. Huang, Y. Xia, C.B. Wang, and Q. Shen, In situ synthesis of a porous high-Mn and high-Al steel by a novel two-step pore-forming technique in vacuum sintering, J. Mater. Sci. Technol., 39(2020), p. 82. doi: 10.1016/j.jmst.2019.09.008
      [38]
      L.H. Zhou, Z. Li, S.S. Wang, et al., Calculation of phase equilibria in Al–Fe–Mn ternary system involving three new ternary intermetallic compounds, Adv. Manuf., 6(2018), No. 2, p. 247. doi: 10.1007/s40436-017-0199-0
      [39]
      A.T. Phan, M.K. Paek, and Y.B. Kang, Phase equilibria and thermodynamics of the Fe–Al–C system: Critical evaluation, experiment and thermodynamic optimization, Acta Mater., 79(2014), p. 1. doi: 10.1016/j.actamat.2014.07.006
      [40]
      B. Hallstedt, A.V. Khvan, B.B. Lindahl, M. Selleby, and S. Liu, PrecHiMn-4—A thermodynamic database for high-Mn steels, Calphad, 56(2017), p. 49. doi: 10.1016/j.calphad.2016.11.006
      [41]
      W.S. Zheng, S. He, M. Selleby, et al., Thermodynamic assessment of the Al–C–Fe system, Calphad, 58(2017), p. 34. doi: 10.1016/j.calphad.2017.05.003
      [42]
      M.S. Kim and Y.B.Kang, Development of thermodynamic database for high Mn-high Al steels: Phase equilibria in the Fe–Mn–Al–C system by experiment and thermodynamic modeling, Calphad, 51(2015), p. 89. doi: 10.1016/j.calphad.2015.08.004

    Catalog


    • /

      返回文章
      返回