留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(10)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  749
  • HTML全文浏览量:  291
  • PDF下载量:  59
  • 被引次数: 0
Ruili Zheng, Jianfang Lü, Weifeng Song, Mudan Liu, Huashan Li, Yong Liu, Xianjin Lü,  and Zhiyuan Ma, Metallurgical properties of CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system pertaining to spent automotive catalyst smelting, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 886-896. https://doi.org/10.1007/s12613-022-2569-2
Cite this article as:
Ruili Zheng, Jianfang Lü, Weifeng Song, Mudan Liu, Huashan Li, Yong Liu, Xianjin Lü,  and Zhiyuan Ma, Metallurgical properties of CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system pertaining to spent automotive catalyst smelting, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 886-896. https://doi.org/10.1007/s12613-022-2569-2
引用本文 PDF XML SpringerLink
研究论文

CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3废汽车催化剂熔炼渣系的冶金特性研究

  • 通讯作者:

    吕建芳    E-mail: lvjf1203@163.com

文章亮点

  • (1) 系统地研究了CaO−SiO2−Al2O3−4.6wt%MgO−Fe2O3五元渣系的熔渣结构及各组元的作用。
  • (2) 结合热力学计算和粘度测试探明了CaO−SiO2−Al2O3−4.6wt%MgO−Fe2O3五元渣系的熔点及粘性转变规律。
  • (3) 总结并提出了优选的低聚合度、粘度和熔点的CaO−SiO2−Al2O3−4.6wt%MgO−Fe2O3五元渣系炉渣组成。
  • 本文系统地研究了废汽车催化剂(SAC)与含铜电镀污泥(CBES)协同熔炼过程中形成的CaO−SiO2−Al2O3−4.6wt%MgO−Fe2O3五元渣系的冶金特性。通过傅立叶变换红外吸收光谱、拉曼光谱、FactSage热力学计算和粘度测试研究了该渣系的熔渣结构、熔化温度和粘度特性。实验结果表明,Fe2O3含量(3.8wt%−16.6wt%)、CaO/SiO2质量比(0.5−1.3)和SiO2/Al2O3质量比(1.0−5.0)的提高可以促进硅酸盐网络的解聚,同时以四面体和八面体单元形式存在的大量Fe2O3确保了Al3+离子的电荷补偿,使得Al2O3仅表现为酸性氧化物。热力学计算和粘度测试结果表明,随着Fe2O3含量、CaO/SiO2比和SiO2/Al2O3比的增加,熔渣中发生硅酸盐网络结构解聚和低熔点相变,促进了熔点和粘度的降低;而进一步增加会导致新的高熔点物相形成,反而导致粘度和熔点回升。根据实验分析,优选的低聚合度、粘度和熔点炉渣组成为:Fe2O3含量为10.2wt%−13.4wt%,CaO/SiO2比为0.7−0.9和SiO2/Al2O3比为3.0−4.0。本研究为SAC和CBES协同熔炼过程中的炉渣设计提供了理论支持。
  • Research Article

    Metallurgical properties of CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system pertaining to spent automotive catalyst smelting

    + Author Affiliations
    • The metallurgical properties of the CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system, formed by the co-treatment process of spent automotive catalyst (SAC) and copper-bearing electroplating sludge (CBES), were studied systematically in this paper. The slag structure, melting temperature, and viscous characteristics were investigated by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, FactSage calculation, and viscosity measurements. Experimental results show that the increase of Fe2O3 content (3.8wt%–16.6wt%), the mass ratio of CaO/SiO2 (m(CaO)/m(SiO2), 0.5–1.3), and the mass ratio of SiO2/Al2O3 (m(SiO2)/m(Al2O3), 1.0–5.0) can promote the depolymerization of silicate network, and the presence of a large amount of Fe2O3 in form of tetrahedral and octahedral units ensures the charge compensation of Al3+ ions and makes Al2O3 only behave as an acid oxide. Thermodynamic calculation and viscosity measurements show that with the increase of Fe2O3 content, m(CaO)/m(SiO2), and m(SiO2)/m(Al2O3), the depolymerization of silicate network structure and low-melting-point phase transformation first occur within the slag, leading to the decrease in melting point and viscosity of the slag, while further increase causes the formation of high-melting-point phase and a resultant re-increase in viscosity and melting point. Based on experimental analysis, the preferred slag composition with low polymerization degree, viscosity, and melting point is as follows: Fe2O3 content of 10.2wt%–13.4wt%, m(CaO)/m(SiO2) of 0.7–0.9 and m(SiO2)/m(Al2O3) of 3.0–4.0. This work provides a theoretical support for slag design in co-smelting process of SAC and CBES.
    • loading
    • [1]
      H.B. Trinh, J.C. Lee, R.R. Srivastava, and S. Kim, Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route, J. Hazard. Mater., 379(2019), art. No. 120772. doi: 10.1016/j.jhazmat.2019.120772
      [2]
      S. Karim and Y.P. Ting, Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes, Resour. Conserv. Recycl., 170(2021), art. No. 105588. doi: 10.1016/j.resconrec.2021.105588
      [3]
      H.G. Dong, J.C. Zhao, J.L. Chen, Y.D. Wu, and B.J. Li, Recovery of platinum group metals from spent catalysts: A review, Int. J. Miner. Process., 145(2015), p. 108. doi: 10.1016/j.minpro.2015.06.009
      [4]
      M.H. Morcali, A new approach to recover platinum-group metals from spent catalytic converters via iron matte, Resour. Conserv. Recycl., 159(2020), art. No. 104891. doi: 10.1016/j.resconrec.2020.104891
      [5]
      H.B. Trinh, J.C. Lee, Y.J. Suh, and J. Lee, A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy, Waste Manage., 114(2020), p. 148. doi: 10.1016/j.wasman.2020.06.030
      [6]
      L. Zhang and Z.M. Xu, A review of current progress of recycling technologies for metals from waste electrical and electronic equipment, J. Clean. Prod., 127(2016), p. 19. doi: 10.1016/j.jclepro.2016.04.004
      [7]
      I. Yakoumis, M. Panou, A.M. Moschovi, and D.Panias, Recovery of platinum group metals from spent automotive catalysts: A review, Clean. Eng. Technol., 3(2021), art. No. 100112. doi: 10.1016/j.clet.2021.100112
      [8]
      Y. Liu, Q.M. Song, L. Zhang, and Z.M. Xu, Novel approach of in situ nickel capture technology to recycle silver and palladium from waste nickel-rich multilayer ceramic capacitors, J. Clean. Prod., 290(2021), art. No. 125650. doi: 10.1016/j.jclepro.2020.125650
      [9]
      H.D. Zheng, Y.J. Ding, Q. Wen, et al., Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts, Sci. Total Environ., 802(2022), art. No. 149830. doi: 10.1016/j.scitotenv.2021.149830
      [10]
      C. Liu, S.C. Sun, G.F. Tu, and F.X. Xiao, Co-treatment of spent automotive catalyst and cyanide tailing via vitrification and smelting-collection process for platinum group metals recovery, J. Environ. Chem. Eng., 9(2021), No. 5, art. No. 105823. doi: 10.1016/j.jece.2021.105823
      [11]
      L. Zhang, Q.M. Song, Y. Liu, and Z.M. Xu, Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper, J. Clean. Prod., 239(2019), art. No. 118093. doi: 10.1016/j.jclepro.2019.118093
      [12]
      G. Kolliopoulos, E. Balomenos, I. Giannopoulou, I. Yakoumis, and D. Panias, Behavior of platinum group during their pyrometallurgical recovery from spent automotive catalysts, OALib, 1(2014), No. 5, art. No. e736. doi: 10.4236/oalib.1100736
      [13]
      Z.N. Jin, H.Y. Yang, J.F. Lv, L.L. Tong, G.B. Chen, and Q. Zhang, Effect of ZnO on viscosity and structure of CaO–SiO2–ZnO–FeO–Al2O3 slags, JOM, 70(2018), No. 8, p. 1430. doi: 10.1007/s11837-017-2660-8
      [14]
      J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 756. doi: 10.1007/s12613-017-1459-5
      [15]
      J.L. Liao, Y.Y. Zhang, S. Sridhar, X.D. Wang, and Z.T. Zhang, Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags, ISIJ Int., 52(2012), No. 5, p. 753. doi: 10.2355/isijinternational.52.753
      [16]
      H.C. Chuang, W.S. Hwang, and S.H. Liu, Effects of basicity and FeO content on the softening and melting temperatures of the CaO–SiO2–MgO–Al2O3 slag system, Mater. Trans., 50(2009), No. 6, p. 1448. doi: 10.2320/matertrans.MRA2008372
      [17]
      Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353. doi: 10.1007/s12613-014-0916-7
      [18]
      D.T. Chen, W.Y. Au, S. van Ewijk, A. Roy, and J.A.Stegemann, Elemental and mineralogical composition of metal-bearing neutralisation sludges, and zinc speciation - A review, J. Hazard. Mater., 416(2021), art. No. 125676. doi: 10.1016/j.jhazmat.2021.125676
      [19]
      Y.S. Wang and S.Q. Liu, Glass-ceramics from a zinc-electroplating solid waste: Devitrification promoted further crystallization of parent glass upon heat treatment, Ceram. Int., 44(2018), No. 9, p. 10663. doi: 10.1016/j.ceramint.2018.03.095
      [20]
      H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692. doi: 10.1007/s11663-011-9512-7
      [21]
      Z.N. Jin, B.R. Wang, Z.J. Liu, H.Y. Yang, M.J. Zou, and Y. Fu, Effects of Fe/SiO2 ratio and MgO content on the viscous behaviors of the SiO2–FeO–MgO–12 wt pct Fe2O3–8 wt pct CaO–3 wt pct Al2O3 slag system, Metall. Mater. Trans. B, 53(2022), No. 2, p. 902. doi: 10.1007/s11663-022-02432-6
      [22]
      Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
      [23]
      J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H.Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291. doi: 10.2355/isijinternational.44.1291
      [24]
      J.S. Choi, T.J. Park, and D.J. Min, Structure-property relationship amphoteric oxide systems via phase stability and ionic structural analysis, J. Am. Ceram. Soc., 104(2021), No. 1, p. 140. doi: 10.1111/jace.17432
      [25]
      S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283. doi: 10.1016/j.jeurceramsoc.2019.05.060
      [26]
      R.D. Jia, L.B. Deng, F. Yun, H. Li, X.F. Zhang, and X.L. Jia, Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics, Mater. Chem. Phys., 233(2019), p. 155. doi: 10.1016/j.matchemphys.2019.05.065
      [27]
      Y. Yue, J. Zhang, F.C. Sun, et al., Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash, J. Environ. Manage., 232(2019), p. 226. doi: 10.1016/j.jenvman.2018.11.053
      [28]
      D.R. Neuville, D. de Ligny, and G.S. Henderson, Advances in Raman spectroscopy applied to earth and material sciences, Rev. Mineral. Geochem., 78(2014), No. 1, p. 509. doi: 10.2138/rmg.2013.78.13
      [29]
      T.S. Kim and J.H. Park, Structure–viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031. doi: 10.2355/isijinternational.54.2031
      [30]
      T.S. Kim and J.H. Park, Thermodynamics of iron redox equilibria and viscosity-structure relationship of CaO–Al2O3–FetO melts, J. Non Cryst. Solids, 542(2020), art. No. 120089. doi: 10.1016/j.jnoncrysol.2020.120089
      [31]
      Q. Li, J. Gao, Y. Zhang, Z. An, and Z. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO–SiO2–MgO–Al2O3 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 346. doi: 10.1007/s11663-016-0858-8
      [32]
      C. Feng, L.H. Gao, J. Tang, Z.G. Liu, and M.S. Chu, Effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO–Al2O3–TiO2–CaO–SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio, Trans. Nonferr. Met. Soc. China, 30(2020), No. 3, p. 800. doi: 10.1016/S1003-6326(20)65255-4
      [33]
      K.J. Schumacher, J.F. White, and J.P. Downey, Viscosities in the calcium–silicate slag system in the range of 1798 K to 1973 K (1525°C to 1700°C), Metall. Mater. Trans. B, 46(2015), No. 1, p. 119. doi: 10.1007/s11663-014-0173-1
      [34]
      Z.T. Zhang, G.H. Wen, P. Tang, and S. Sridhar, The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes, ISIJ Int., 48(2008), No. 6, p. 739. doi: 10.2355/isijinternational.48.739
      [35]
      Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 758. doi: 10.1007/s11663-014-0270-1
      [36]
      M. Chen, S. Raghunath, and B. Zhao, Viscosity of SiO2–“FeO”–Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820. doi: 10.1007/s11663-013-9831-y
      [37]
      C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9
      [38]
      Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of Al2O3 on the viscosity and structure of CaO–SiO2–MgO–Al2O3–FetO slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 537. doi: 10.1007/s11663-015-0303-4

    Catalog


    • /

      返回文章
      返回