Cite this article as: |
Ruili Zheng, Jianfang Lü, Weifeng Song, Mudan Liu, Huashan Li, Yong Liu, Xianjin Lü, and Zhiyuan Ma, Metallurgical properties of CaO–SiO2–Al2O3–4.6wt%MgO–Fe2O3 slag system pertaining to spent automotive catalyst smelting, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 886-896. https://doi.org/10.1007/s12613-022-2569-2 |
吕建芳 E-mail: lvjf1203@163.com
[1] |
H.B. Trinh, J.C. Lee, R.R. Srivastava, and S. Kim, Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route, J. Hazard. Mater., 379(2019), art. No. 120772. doi: 10.1016/j.jhazmat.2019.120772
|
[2] |
S. Karim and Y.P. Ting, Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes, Resour. Conserv. Recycl., 170(2021), art. No. 105588. doi: 10.1016/j.resconrec.2021.105588
|
[3] |
H.G. Dong, J.C. Zhao, J.L. Chen, Y.D. Wu, and B.J. Li, Recovery of platinum group metals from spent catalysts: A review, Int. J. Miner. Process., 145(2015), p. 108. doi: 10.1016/j.minpro.2015.06.009
|
[4] |
M.H. Morcali, A new approach to recover platinum-group metals from spent catalytic converters via iron matte, Resour. Conserv. Recycl., 159(2020), art. No. 104891. doi: 10.1016/j.resconrec.2020.104891
|
[5] |
H.B. Trinh, J.C. Lee, Y.J. Suh, and J. Lee, A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy, Waste Manage., 114(2020), p. 148. doi: 10.1016/j.wasman.2020.06.030
|
[6] |
L. Zhang and Z.M. Xu, A review of current progress of recycling technologies for metals from waste electrical and electronic equipment, J. Clean. Prod., 127(2016), p. 19. doi: 10.1016/j.jclepro.2016.04.004
|
[7] |
I. Yakoumis, M. Panou, A.M. Moschovi, and D.Panias, Recovery of platinum group metals from spent automotive catalysts: A review, Clean. Eng. Technol., 3(2021), art. No. 100112. doi: 10.1016/j.clet.2021.100112
|
[8] |
Y. Liu, Q.M. Song, L. Zhang, and Z.M. Xu, Novel approach of in situ nickel capture technology to recycle silver and palladium from waste nickel-rich multilayer ceramic capacitors, J. Clean. Prod., 290(2021), art. No. 125650. doi: 10.1016/j.jclepro.2020.125650
|
[9] |
H.D. Zheng, Y.J. Ding, Q. Wen, et al., Slag design and iron capture mechanism for recovering low-grade Pt, Pd, and Rh from leaching residue of spent auto-exhaust catalysts, Sci. Total Environ., 802(2022), art. No. 149830. doi: 10.1016/j.scitotenv.2021.149830
|
[10] |
C. Liu, S.C. Sun, G.F. Tu, and F.X. Xiao, Co-treatment of spent automotive catalyst and cyanide tailing via vitrification and smelting-collection process for platinum group metals recovery, J. Environ. Chem. Eng., 9(2021), No. 5, art. No. 105823. doi: 10.1016/j.jece.2021.105823
|
[11] |
L. Zhang, Q.M. Song, Y. Liu, and Z.M. Xu, Novel approach for recovery of palladium in spent catalyst from automobile by a capture technology of eutectic copper, J. Clean. Prod., 239(2019), art. No. 118093. doi: 10.1016/j.jclepro.2019.118093
|
[12] |
G. Kolliopoulos, E. Balomenos, I. Giannopoulou, I. Yakoumis, and D. Panias, Behavior of platinum group during their pyrometallurgical recovery from spent automotive catalysts, OALib, 1(2014), No. 5, art. No. e736. doi: 10.4236/oalib.1100736
|
[13] |
Z.N. Jin, H.Y. Yang, J.F. Lv, L.L. Tong, G.B. Chen, and Q. Zhang, Effect of ZnO on viscosity and structure of CaO–SiO2–ZnO–FeO–Al2O3 slags, JOM, 70(2018), No. 8, p. 1430. doi: 10.1007/s11837-017-2660-8
|
[14] |
J.F. Lü, Z.N. Jin, H.Y. Yang, L.L. Tong, G.B. Chen, and F.X. Xiao, Effect of the CaO/SiO2 mass ratio and FeO content on the viscosity of CaO–SiO2–“FeO”–12wt%ZnO–3wt%Al2O3 slags, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 756. doi: 10.1007/s12613-017-1459-5
|
[15] |
J.L. Liao, Y.Y. Zhang, S. Sridhar, X.D. Wang, and Z.T. Zhang, Effect of Al2O3/SiO2 ratio on the viscosity and structure of slags, ISIJ Int., 52(2012), No. 5, p. 753. doi: 10.2355/isijinternational.52.753
|
[16] |
H.C. Chuang, W.S. Hwang, and S.H. Liu, Effects of basicity and FeO content on the softening and melting temperatures of the CaO–SiO2–MgO–Al2O3 slag system, Mater. Trans., 50(2009), No. 6, p. 1448. doi: 10.2320/matertrans.MRA2008372
|
[17] |
Y.M. Gao, S.B. Wang, C. Hong, X.J. Ma, and F. Yang, Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9wt%Al2O3 slag system, Int. J. Miner. Metall. Mater., 21(2014), No. 4, p. 353. doi: 10.1007/s12613-014-0916-7
|
[18] |
D.T. Chen, W.Y. Au, S. van Ewijk, A. Roy, and J.A.Stegemann, Elemental and mineralogical composition of metal-bearing neutralisation sludges, and zinc speciation - A review, J. Hazard. Mater., 416(2021), art. No. 125676. doi: 10.1016/j.jhazmat.2021.125676
|
[19] |
Y.S. Wang and S.Q. Liu, Glass-ceramics from a zinc-electroplating solid waste: Devitrification promoted further crystallization of parent glass upon heat treatment, Ceram. Int., 44(2018), No. 9, p. 10663. doi: 10.1016/j.ceramint.2018.03.095
|
[20] |
H.S. Park, S.S. Park, and I. Sohn, The viscous behavior of FeOt–Al2O3–SiO2 copper smelting slags, Metall. Mater. Trans. B, 42(2011), No. 4, p. 692. doi: 10.1007/s11663-011-9512-7
|
[21] |
Z.N. Jin, B.R. Wang, Z.J. Liu, H.Y. Yang, M.J. Zou, and Y. Fu, Effects of Fe/SiO2 ratio and MgO content on the viscous behaviors of the SiO2–FeO–MgO–12 wt pct Fe2O3–8 wt pct CaO–3 wt pct Al2O3 slag system, Metall. Mater. Trans. B, 53(2022), No. 2, p. 902. doi: 10.1007/s11663-022-02432-6
|
[22] |
Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
|
[23] |
J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, and S.H.Yi, Influence of MgO and Al2O3 contents on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1291. doi: 10.2355/isijinternational.44.1291
|
[24] |
J.S. Choi, T.J. Park, and D.J. Min, Structure-property relationship amphoteric oxide systems via phase stability and ionic structural analysis, J. Am. Ceram. Soc., 104(2021), No. 1, p. 140. doi: 10.1111/jace.17432
|
[25] |
S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283. doi: 10.1016/j.jeurceramsoc.2019.05.060
|
[26] |
R.D. Jia, L.B. Deng, F. Yun, H. Li, X.F. Zhang, and X.L. Jia, Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics, Mater. Chem. Phys., 233(2019), p. 155. doi: 10.1016/j.matchemphys.2019.05.065
|
[27] |
Y. Yue, J. Zhang, F.C. Sun, et al., Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash, J. Environ. Manage., 232(2019), p. 226. doi: 10.1016/j.jenvman.2018.11.053
|
[28] |
D.R. Neuville, D. de Ligny, and G.S. Henderson, Advances in Raman spectroscopy applied to earth and material sciences, Rev. Mineral. Geochem., 78(2014), No. 1, p. 509. doi: 10.2138/rmg.2013.78.13
|
[29] |
T.S. Kim and J.H. Park, Structure–viscosity relationship of low-silica calcium aluminosilicate melts, ISIJ Int., 54(2014), No. 9, p. 2031. doi: 10.2355/isijinternational.54.2031
|
[30] |
T.S. Kim and J.H. Park, Thermodynamics of iron redox equilibria and viscosity-structure relationship of CaO–Al2O3–FetO melts, J. Non Cryst. Solids, 542(2020), art. No. 120089. doi: 10.1016/j.jnoncrysol.2020.120089
|
[31] |
Q. Li, J. Gao, Y. Zhang, Z. An, and Z. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO–SiO2–MgO–Al2O3 slags, Metall. Mater. Trans. B, 48(2017), No. 1, p. 346. doi: 10.1007/s11663-016-0858-8
|
[32] |
C. Feng, L.H. Gao, J. Tang, Z.G. Liu, and M.S. Chu, Effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO–Al2O3–TiO2–CaO–SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio, Trans. Nonferr. Met. Soc. China, 30(2020), No. 3, p. 800. doi: 10.1016/S1003-6326(20)65255-4
|
[33] |
K.J. Schumacher, J.F. White, and J.P. Downey, Viscosities in the calcium–silicate slag system in the range of 1798 K to 1973 K (1525°C to 1700°C), Metall. Mater. Trans. B, 46(2015), No. 1, p. 119. doi: 10.1007/s11663-014-0173-1
|
[34] |
Z.T. Zhang, G.H. Wen, P. Tang, and S. Sridhar, The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes, ISIJ Int., 48(2008), No. 6, p. 739. doi: 10.2355/isijinternational.48.739
|
[35] |
Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 758. doi: 10.1007/s11663-014-0270-1
|
[36] |
M. Chen, S. Raghunath, and B. Zhao, Viscosity of SiO2–“FeO”–Al2O3 system in equilibrium with metallic Fe, Metall. Mater. Trans. B, 44(2013), No. 4, p. 820. doi: 10.1007/s11663-013-9831-y
|
[37] |
C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9
|
[38] |
Z.J. Wang, Y.Q. Sun, S. Sridhar, M. Zhang, M. Guo, and Z.T. Zhang, Effect of Al2O3 on the viscosity and structure of CaO–SiO2–MgO–Al2O3–FetO slags, Metall. Mater. Trans. B, 46(2015), No. 2, p. 537. doi: 10.1007/s11663-015-0303-4
|