留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1028
  • HTML全文浏览量:  393
  • PDF下载量:  73
  • 被引次数: 0
Yahui Wang, Minghui Zhang, Xuesong Deng, Zhigang Li, Zongsheng Chen, Jiaming Shi, Xijiang Han, and Yunchen Du, Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 536-547. https://doi.org/10.1007/s12613-022-2570-9
Cite this article as:
Yahui Wang, Minghui Zhang, Xuesong Deng, Zhigang Li, Zongsheng Chen, Jiaming Shi, Xijiang Han, and Yunchen Du, Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 536-547. https://doi.org/10.1007/s12613-022-2570-9
引用本文 PDF XML SpringerLink
研究论文

具有疏水、隔热和微波吸收性能的多功能Mo2C修饰的rGO气凝胶

  • 通讯作者:

    时家明    E-mail: shijiaming17@nudt.edu.cn

    杜耘辰    E-mail: yunchendu@hit.edu.cn

文章亮点

  • (1) 制备了具有三维多孔网状结构的Mo2C/rGO气凝胶复合材料,系统研究了Mo2C含量的变化对材料性能的影响。
  • (2) Mo2C/rGO气凝胶的三维交联网状结构和可变的化学成分使其表现出可调的疏水性和隔热性能。
  • (3)通过调控Mo2C含量,可以实现衰减能力和阻抗匹配之间的良好平衡,优化吸波性能。
  • 还原氧化石墨烯(rGO)气凝胶因其丰富的导电网络和复杂的内部微观结构,以及与其他电磁衰减组分的良好兼容性,可以用作高效微波吸收材料,以缓解日益严重的电磁污染问题。然而,rGO气凝胶损耗单一,无法在自由空间中产生匹配良好的特性阻抗,使得电磁波难以在材料内部发生有效衰减。本文旨在开发一种具有多功能特性的Mo2C修饰rGO气凝胶复合材料作为高效微波吸收材料。本文通过水热组装、冷冻干燥和高温热解过程,制备了Mo2C纳米颗粒修饰的rGO气凝胶复合材料,研究了组成变化对复合材料形貌、结构和性能的影响。结果表明,当Mo2C/rGO气凝胶质量填充为9%时,在7.3 GHz处最小反射损耗值可达到−63.3 dB,最大有效吸收带宽为5.1 GHz。优异吸波性能主要来自于Mo2C纳米颗粒带来的衰减能力和阻抗匹配之间的良好平衡,尽管相对复介电常数随着Mo2C负载的增加而逐渐减小导致介电损耗下降,但Mo2C优化了电磁波入射界面处的阻抗匹配特性。引入Mo2C纳米颗粒后,rGO气凝胶的疏水性和隔热性也得到了有效改善。本文中Mo2C纳米颗粒对多功能特性的积极影响增强了Mo2C/rGO气凝胶的环境适用性,使其成为多功能高性能微波吸收材料的候选材料。
  • Research Article

    Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption

    + Author Affiliations
    • Reduced graphene oxide (rGO) aerogels are emerging as very attractive scaffolds for high-performance electromagnetic wave absorption materials (EWAMs) due to their intrinsic conductive networks and intricate interior microstructure, as well as good compatibility with other electromagnetic (EM) components. Herein, we realized the decoration of rGO aerogel with Mo2C nanoparticles by sequential hydrothermal assembly, freeze-drying, and high-temperature pyrolysis. Results show that Mo2C nanoparticle loading can be easily controlled by the ammonium molybdate to glucose molar ratio. The hydrophobicity and thermal insulation of the rGO aerogel are effectively improved upon the introduction of Mo2C nanoparticles, and more importantly, these nanoparticles regulate the EM properties of the rGO aerogel to a large extent. Although more Mo2C nanoparticles may decrease the overall attenuation ability of the rGO aerogel, they bring much better impedance matching. At a molar ratio of 1:1, a desirable balance between attenuation ability and impedance matching is observed. In this context, the Mo2C/rGO aerogel displays strong reflection loss and broad response bandwidth, even with a small applied thickness (1.7 mm) and low filler loading (9.0wt%). The positive effects of Mo2C nanoparticles on multifunctional properties may render Mo2C/rGO aerogels promising candidates for high-performance EWAMs under harsh conditions.
    • loading
    • Supplementary Information-s12613-022-2570-9.docx
    • [1]
      A.C. Pierre and G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev., 102(2002), No. 11, p. 4243. doi: 10.1021/cr0101306
      [2]
      H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, and J.S. Qiu, Ultralight and highly compressible graphene aerogels, Adv. Mater., 25(2013), No. 15, p. 2219. doi: 10.1002/adma.201204530
      [3]
      I. Lee, S.M. Kang, S.C. Jang, et al., One-pot gamma ray-induced green synthesis of a Prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants, J. Mater. Chem. A, 7(2019), No. 4, p. 1737. doi: 10.1039/C8TA10250C
      [4]
      Y. Wang, D.Z. Kong, W.H. Shi, et al., Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries, Adv. Energy Mater., 6(2016), No. 21, art. No. 1601057. doi: 10.1002/aenm.201601057
      [5]
      S.B. Xi, L.L. Wang, H.Q. Xie, and W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage, ACS Nano, 16(2022), No. 3, p. 3843. doi: 10.1021/acsnano.1c08581
      [6]
      Q.C. Zhang, Z.J. Du, M.M. Hou, et al., Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption, Carbon, 188(2022), p. 442. doi: 10.1016/j.carbon.2021.11.047
      [7]
      X.H. Rui, H.T. Tan, and Q.Y. Yan, Nanostructured metal sulfides for energy storage, Nanoscale, 6(2014), No. 17, p. 9889. doi: 10.1039/C4NR03057E
      [8]
      M.M. Zhang, Z.Y. Jiang, X.Y. Lv, et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability, J. Phys. D: Appl. Phys., 53(2020), No. 2, art. No. 02LT01. doi: 10.1088/1361-6463/ab48a7
      [9]
      A. Plyushch, T.L. Zhai, H.S. Xia, et al., Ultra-light reduced graphene oxide based aerogel/foam absorber of microwave radiation, Materials, 12(2019), No. 2, art. No. 213. doi: 10.3390/ma12020213
      [10]
      F. Ye, Q. Song, Z.C. Zhang, et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1707205. doi: 10.1002/adfm.201707205
      [11]
      H.B. Zhao, J.B. Cheng, J.Y. Zhu, and Y.Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness, J. Mater. Chem. C, 7(2019), No. 2, p. 441. doi: 10.1039/C8TC05239E
      [12]
      P.K. Wu, Y.R. Feng, J. Xu, Z.G. Fang, Q.C. Liu, and X.K. Kong, Ultralight N-doped platanus acerifolia biomass carbon microtubes/RGO composite aerogel with enhanced mechanical properties and high-performance microwave absorption, Carbon, 202(2023), p. 194. doi: 10.1016/j.carbon.2022.10.011
      [13]
      J.J. Li, S. Yang, P.Z. Jiao, et al., Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam, Carbon, 157(2020), p. 427. doi: 10.1016/j.carbon.2019.10.074
      [14]
      S.S. Wang, Y.C. Xu, R.R. Fu, et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 76. doi: 10.1007/s40820-019-0307-8
      [15]
      Y.X. Li, Y.J. Liao, L.Z. Ji, et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption, Small, 18(2022), No. 4, art. No. 2107265. doi: 10.1002/smll.202107265
      [16]
      X.H. Liang, Z.M. Man, B. Quan, et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 102. doi: 10.1007/s40820-020-00432-2
      [17]
      Y. Sun, J.W. Zhang, Y. Zong, et al., Crystalline-amorphous Permalloy@iron oxide core–shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents, ACS Appl. Mater. Interfaces, 11(2019), No. 6, p. 6374. doi: 10.1021/acsami.8b18875
      [18]
      H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, and Y.C. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review, Nano-Micro Lett., 13(2021), No. 1, art. No. 208. doi: 10.1007/s40820-021-00734-z
      [19]
      Y.L. Lian, B.H. Han, D.W. Liu, et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 153. doi: 10.1007/s40820-020-00491-5
      [20]
      C. Wu, Z.F. Chen, M.L. Wang, et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption, Small, 16(2020), No. 30, art. No. 2001686. doi: 10.1002/smll.202001686
      [21]
      Y. Li, F.B. Meng, Y. Mei, et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption, Chem. Eng. J., 391(2020), art. No. 123512. doi: 10.1016/j.cej.2019.123512
      [22]
      Y. Tong, M. He, Y.M. Zhou, et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8212. doi: 10.1021/acssuschemeng.7b04883
      [23]
      Y.H. Cheng, M.Y. Tan, P. Hu, et al., Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property, Appl. Surf. Sci., 448(2018), p. 138. doi: 10.1016/j.apsusc.2018.04.132
      [24]
      J.P. Chen, H. Jia, Z. Liu, et al., Construction of C–Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption, Carbon, 164(2020), p. 59. doi: 10.1016/j.carbon.2020.03.049
      [25]
      S. Dong, W.Z. Zhang, X.H. Zhang, P. Hu, and J.C. Han, Designable synthesis of core–shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band, Chem. Eng. J., 354(2018), p. 767. doi: 10.1016/j.cej.2018.08.062
      [26]
      S.S. Xiao, H. Mei, D.Y. Han, K.G. Dassios, and L.F. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption, Carbon, 122(2017), p. 718. doi: 10.1016/j.carbon.2017.07.023
      [27]
      Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, and Y.Z. Wang, Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins, Nano-Micro Lett., 14(2022), No. 1, art. No. 76. doi: 10.1007/s40820-022-00817-5
      [28]
      Y.H. Wang, C.L. Li, X.J. Han, et al., Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption, ACS Appl. Nano Mater., 1(2018), No. 9, p. 5366. doi: 10.1021/acsanm.8b01479
      [29]
      Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312. doi: 10.1016/j.cej.2019.04.153
      [30]
      Y.H. Wang, X.D. Li, X.J. Han, et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption, Chem. Eng. J., 387(2020), art. No. 124159. doi: 10.1016/j.cej.2020.124159
      [31]
      D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano, 4(2010), No. 8, p. 4806. doi: 10.1021/nn1006368
      [32]
      X.M. Sun and Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem., 116(2004), No. 5, p. 607. doi: 10.1002/ange.200352386
      [33]
      B.H. Han, W.L. Chu, X.J. Han, et al., Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials, Carbon, 168(2020), p. 404. doi: 10.1016/j.carbon.2020.07.005
      [34]
      D. Krishnan, K. Raidongia, J.J. Shao, and J.X. Huang, Graphene oxide assisted hydrothermal carbonization of carbon hydrates, ACS Nano, 8(2014), No. 1, p. 449. doi: 10.1021/nn404805p
      [35]
      J.F. Li, N. Zhang, H.T. Zhao, Z.G. Li, B. Tian, and Y.C. Du, Cornstalk-derived macroporous carbon materials with enhanced microwave absorption, J. Mater. Sci. Mater. Electron., 32(2021), No. 21, p. 25758. doi: 10.1007/s10854-020-04571-5
      [36]
      L. Zhang, Z.L. Zhang, Y.Y. Lv, et al., Reduced graphene oxide aerogels with uniformly self-assembled polyaniline nanosheets for electromagnetic absorption, ACS Appl. Nano Mater., 3(2020), No. 6, p. 5978. doi: 10.1021/acsanm.0c01115
      [37]
      Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. doi: 10.1002/adfm.201807624
      [38]
      L.R. Cui, Y.H. Wang, X.J. Han, et al., Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution, Carbon, 174(2021), p. 673. doi: 10.1016/j.carbon.2020.10.070
      [39]
      X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption, Chem. Eng. J., 388(2020), art. No. 124317. doi: 10.1016/j.cej.2020.124317
      [40]
      B. Yu, D.X. Yang, Y. Hu, J.R. He, Y.F. Chen, and W.D. He, Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage, Small Methods, 3(2019), No. 2, art. No. 1800287. doi: 10.1002/smtd.201800287
      [41]
      X.J. Zhang, G.S. Wang, W.Q. Cao, et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride, ACS Appl. Mater. Interfaces, 6(2014), No. 10, p. 7471. doi: 10.1021/am500862g
      [42]
      N.N. Wu, C. Liu, D.M. Xu, et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers, ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 12471. doi: 10.1021/acssuschemeng.8b03097
      [43]
      Y. Qiu, H.B. Yang, B. Wen, L. Ma, and Y. Lin, Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber, J. Colloid Interface Sci., 590(2021), p. 561. doi: 10.1016/j.jcis.2021.02.003
      [44]
      W.J. Zhu F. Ye, M.H. Li, et al., In-situ growth of wafer-like Ti3C2/carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance, Composites Part B, 202(2020), art. No. 108408. doi: 10.1016/j.compositesb.2020.108408
      [45]
      F.Y. Wang, Y.L. Liu, H.H. Zhao, et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics, Chem. Eng. J., 450(2022), art. No. 138160. doi: 10.1016/j.cej.2022.138160
      [46]
      X.L. Ye, Z.F. Chen, M. Li, et al., Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment, ACS Sustainable Chem. Eng., 7(2019), No. 22, p. 18395. doi: 10.1021/acssuschemeng.9b04062
      [47]
      H.L. Xu, X.W. Yin, X.M. Fan, et al., Constructing a tunable heterogeneous interface in bimetallic metal–organic frameworks derived porous carbon for excellent microwave absorption performance, Carbon, 148(2019), p. 421. doi: 10.1016/j.carbon.2019.03.091
      [48]
      Y.Y. Chen, Y. Zhang, W.J. Jiang, et al., Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution, ACS Nano, 10(2016), No. 9, p. 8851. doi: 10.1021/acsnano.6b04725
      [49]
      Y.A. Chen, P. Pötschke, J. Pionteck, B. Voit, and H.S. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 12(2020), No. 19, p. 22088. doi: 10.1021/acsami.9b23052
      [50]
      W.H. Gu, J.W. Tan, J.B. Chen, et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 25, p. 28727. doi: 10.1021/acsami.0c09202
      [51]
      K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, and Z.R. Geng, Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene, Composites Part A, 109(2018), p. 267. doi: 10.1016/j.compositesa.2018.03.014
      [52]
      S.D. Ma, N.Q. Zhao, C.S. Shi, et al., Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372. doi: 10.1016/j.apsusc.2017.01.078
      [53]
      A. Sheng, Y.Q. Yang, D.X. Yan, et al., Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core–shell structure for enhanced electromagnetic wave absorption, Carbon, 167(2020), p. 530. doi: 10.1016/j.carbon.2020.05.107
      [54]
      X.S. Deng, Y.H. Wang, L.F. Ma, et al., Construction of dual-shell Mo2C/C microsphere towards efficient electromagnetic wave absorption, Int. J. Mol. Sci., 23(2022), No. 23, art. No. 14502. doi: 10.3390/ijms232314502
      [55]
      F.Y. Wang, P. Xu, N. Shi, et al., Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution, J. Mater. Sci. Technol., 93(2021), p. 7. doi: 10.1016/j.jmst.2021.03.048
      [56]
      Y. Cheng, W. Meng, Z.Y. Li, et al., Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires, J. Mater. Chem. C, 5(2017), No. 35, p. 8981. doi: 10.1039/C7TC02835K
      [57]
      C.H. Tian, Y.C. Du, P. Xu, et al., Constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption, ACS Appl. Mater. Interfaces, 7(2015), No. 36, p. 20090. doi: 10.1021/acsami.5b05259
      [58]
      N. He, X.F. Yang, L.X. Shi, et al., Chemical conversion of Cu2O/PPy core–shell nanowires (CSNWs): A surface/interface adjustment method for high-quality Cu/Fe/C and Cu/Fe3O4/C CSNWs with superior microwave absorption capabilities, Carbon, 166(2020), p. 205. doi: 10.1016/j.carbon.2020.05.044
      [59]
      J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
      [60]
      F.B. Meng, H.G. Wang, F. Huang, et al., Graphene-based microwave absorbing composites: A review and prospective, Composites Part B, 137(2018), p. 260. doi: 10.1016/j.compositesb.2017.11.023
      [61]
      L.X. Gai, H.H. Zhao, F.Y. Wang, et al., Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption, Nano Res., 15(2022), No. 10, p. 9410. doi: 10.1007/s12274-022-4695-6
      [62]
      Z. Lu, Y. Wang, X.C. Di, N. Wang, R.R. Cheng, and L.Q. Yang, Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption, Carbon, 197(2022), p. 466. doi: 10.1016/j.carbon.2022.06.075
      [63]
      J.B. Cheng, B.W. Liu, Y.Q. Wang, H.B. Zhao, and Y.Z. Wang, Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption, J. Mater. Sci. Technol., 130(2022), p. 157. doi: 10.1016/j.jmst.2022.05.013
      [64]
      X. Zhang, J. Cheng, Z. Xiang, L. Cai, and W. Lu, A hierarchical Co@mesoporous C/macroporous C sheet composite derived from bimetallic MOF and oroxylum indicum for enhanced microwave absorption, Carbon, 187(2022), p. 477. doi: 10.1016/j.carbon.2021.11.044
      [65]
      J. Feng, Y. Zong, Y. Sun, et al., Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance, Chem. Eng. J., 345(2018), p. 441. doi: 10.1016/j.cej.2018.04.006
      [66]
      G.Y. Zhang, R.W. Shu, Y. Xie, et al., Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties, Mater. Lett., 231(2018), p. 209. doi: 10.1016/j.matlet.2018.08.055
      [67]
      Y.N. Yang, L. Xia, T. Zhang, et al., Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance, Chem. Eng. J., 352(2018), p. 510. doi: 10.1016/j.cej.2018.07.064
      [68]
      Y. Wu, R.W. Shu, Z.Y. Li, et al., Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites, J. Alloys Compd., 784(2019), p. 887. doi: 10.1016/j.jallcom.2019.01.139
      [69]
      M.L. Ma, W.T. Li, Z.Y. Tong, et al., 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption, Mater. Des., 188(2020), art. No. 108462. doi: 10.1016/j.matdes.2019.108462
      [70]
      Y. Huang, N. Zhang, M.Y. Wang, X.D. Liu, M. Zong, and P.B. Liu, Facile synthesis of hollow ZnxFe3−xO4@porous MnO2/rGO conductive network composites for tunable electromagnetic wave absorption, Ind. Eng. Chem. Res., 57(2018), No. 44, p. 14878. doi: 10.1021/acs.iecr.8b04406
      [71]
      J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, and Y.Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption, Carbon, 183(2021), p. 205. doi: 10.1016/j.carbon.2021.07.019
      [72]
      Y. Liu, W.W. Wu, L.N. Liu, Z.J. Xing, X.M. Chen, and P. Liu, Heterointerface engineering of lightweight, worm-like SiC/B4C hybrid nanowires as excellent microwave absorbers, J. Mater. Chem. C, 7(2019), No. 32, p. 9892. doi: 10.1039/C9TC02952D
      [73]
      P.B. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, and J.H. Luo, Core–shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation, ACS Appl. Mater. Interfaces, 11(2019), No. 28, p. 25624. doi: 10.1021/acsami.9b08525
      [74]
      D.W. Liu, Y.C. Du, P. Xu, et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption, J. Mater. Chem. C, 7(2019), No. 17, p. 5037. doi: 10.1039/C9TC00771G
      [75]
      X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Bimetallic metal–organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17870. doi: 10.1021/acsami.0c01572
      [76]
      H.H. Zhao, X.Z. Xu, Y.H. Wang, et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution, Small, 16(2020), No. 43, art. No. 2003407. doi: 10.1002/smll.202003407

    Catalog


    • /

      返回文章
      返回