Cite this article as: |
Yahui Wang, Minghui Zhang, Xuesong Deng, Zhigang Li, Zongsheng Chen, Jiaming Shi, Xijiang Han, and Yunchen Du, Reduced graphene oxide aerogel decorated with Mo2C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 536-547. https://doi.org/10.1007/s12613-022-2570-9 |
时家明 E-mail: shijiaming17@nudt.edu.cn
杜耘辰 E-mail: yunchendu@hit.edu.cn
Supplementary Information-s12613-022-2570-9.docx |
[1] |
A.C. Pierre and G.M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev., 102(2002), No. 11, p. 4243. doi: 10.1021/cr0101306
|
[2] |
H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, and J.S. Qiu, Ultralight and highly compressible graphene aerogels, Adv. Mater., 25(2013), No. 15, p. 2219. doi: 10.1002/adma.201204530
|
[3] |
I. Lee, S.M. Kang, S.C. Jang, et al., One-pot gamma ray-induced green synthesis of a Prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants, J. Mater. Chem. A, 7(2019), No. 4, p. 1737. doi: 10.1039/C8TA10250C
|
[4] |
Y. Wang, D.Z. Kong, W.H. Shi, et al., Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries, Adv. Energy Mater., 6(2016), No. 21, art. No. 1601057. doi: 10.1002/aenm.201601057
|
[5] |
S.B. Xi, L.L. Wang, H.Q. Xie, and W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage, ACS Nano, 16(2022), No. 3, p. 3843. doi: 10.1021/acsnano.1c08581
|
[6] |
Q.C. Zhang, Z.J. Du, M.M. Hou, et al., Ultralight, anisotropic, and self-supported graphene/MWCNT aerogel with high-performance microwave absorption, Carbon, 188(2022), p. 442. doi: 10.1016/j.carbon.2021.11.047
|
[7] |
X.H. Rui, H.T. Tan, and Q.Y. Yan, Nanostructured metal sulfides for energy storage, Nanoscale, 6(2014), No. 17, p. 9889. doi: 10.1039/C4NR03057E
|
[8] |
M.M. Zhang, Z.Y. Jiang, X.Y. Lv, et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability, J. Phys. D: Appl. Phys., 53(2020), No. 2, art. No. 02LT01. doi: 10.1088/1361-6463/ab48a7
|
[9] |
A. Plyushch, T.L. Zhai, H.S. Xia, et al., Ultra-light reduced graphene oxide based aerogel/foam absorber of microwave radiation, Materials, 12(2019), No. 2, art. No. 213. doi: 10.3390/ma12020213
|
[10] |
F. Ye, Q. Song, Z.C. Zhang, et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1707205. doi: 10.1002/adfm.201707205
|
[11] |
H.B. Zhao, J.B. Cheng, J.Y. Zhu, and Y.Z. Wang, Ultralight CoNi/rGO aerogels toward excellent microwave absorption at ultrathin thickness, J. Mater. Chem. C, 7(2019), No. 2, p. 441. doi: 10.1039/C8TC05239E
|
[12] |
P.K. Wu, Y.R. Feng, J. Xu, Z.G. Fang, Q.C. Liu, and X.K. Kong, Ultralight N-doped platanus acerifolia biomass carbon microtubes/RGO composite aerogel with enhanced mechanical properties and high-performance microwave absorption, Carbon, 202(2023), p. 194. doi: 10.1016/j.carbon.2022.10.011
|
[13] |
J.J. Li, S. Yang, P.Z. Jiao, et al., Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam, Carbon, 157(2020), p. 427. doi: 10.1016/j.carbon.2019.10.074
|
[14] |
S.S. Wang, Y.C. Xu, R.R. Fu, et al., Rational construction of hierarchically porous Fe–Co/N-doped carbon/rGO composites for broadband microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 76. doi: 10.1007/s40820-019-0307-8
|
[15] |
Y.X. Li, Y.J. Liao, L.Z. Ji, et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption, Small, 18(2022), No. 4, art. No. 2107265. doi: 10.1002/smll.202107265
|
[16] |
X.H. Liang, Z.M. Man, B. Quan, et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 102. doi: 10.1007/s40820-020-00432-2
|
[17] |
Y. Sun, J.W. Zhang, Y. Zong, et al., Crystalline-amorphous Permalloy@iron oxide core–shell nanoparticles decorated on graphene as high-efficiency, lightweight, and hydrophobic microwave absorbents, ACS Appl. Mater. Interfaces, 11(2019), No. 6, p. 6374. doi: 10.1021/acsami.8b18875
|
[18] |
H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, and Y.C. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review, Nano-Micro Lett., 13(2021), No. 1, art. No. 208. doi: 10.1007/s40820-021-00734-z
|
[19] |
Y.L. Lian, B.H. Han, D.W. Liu, et al., Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption, Nano-Micro Lett., 12(2020), No. 1, art. No. 153. doi: 10.1007/s40820-020-00491-5
|
[20] |
C. Wu, Z.F. Chen, M.L. Wang, et al., Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption, Small, 16(2020), No. 30, art. No. 2001686. doi: 10.1002/smll.202001686
|
[21] |
Y. Li, F.B. Meng, Y. Mei, et al., Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption, Chem. Eng. J., 391(2020), art. No. 123512. doi: 10.1016/j.cej.2019.123512
|
[22] |
Y. Tong, M. He, Y.M. Zhou, et al., Three-dimensional hierarchical architecture of the TiO2/Ti3C2Tx/RGO ternary composite aerogel for enhanced electromagnetic wave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 7, p. 8212. doi: 10.1021/acssuschemeng.7b04883
|
[23] |
Y.H. Cheng, M.Y. Tan, P. Hu, et al., Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property, Appl. Surf. Sci., 448(2018), p. 138. doi: 10.1016/j.apsusc.2018.04.132
|
[24] |
J.P. Chen, H. Jia, Z. Liu, et al., Construction of C–Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption, Carbon, 164(2020), p. 59. doi: 10.1016/j.carbon.2020.03.049
|
[25] |
S. Dong, W.Z. Zhang, X.H. Zhang, P. Hu, and J.C. Han, Designable synthesis of core–shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band, Chem. Eng. J., 354(2018), p. 767. doi: 10.1016/j.cej.2018.08.062
|
[26] |
S.S. Xiao, H. Mei, D.Y. Han, K.G. Dassios, and L.F. Cheng, Ultralight lamellar amorphous carbon foam nanostructured by SiC nanowires for tunable electromagnetic wave absorption, Carbon, 122(2017), p. 718. doi: 10.1016/j.carbon.2017.07.023
|
[27] |
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu, and Y.Z. Wang, Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins, Nano-Micro Lett., 14(2022), No. 1, art. No. 76. doi: 10.1007/s40820-022-00817-5
|
[28] |
Y.H. Wang, C.L. Li, X.J. Han, et al., Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption, ACS Appl. Nano Mater., 1(2018), No. 9, p. 5366. doi: 10.1021/acsanm.8b01479
|
[29] |
Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312. doi: 10.1016/j.cej.2019.04.153
|
[30] |
Y.H. Wang, X.D. Li, X.J. Han, et al., Ternary Mo2C/Co/C composites with enhanced electromagnetic waves absorption, Chem. Eng. J., 387(2020), art. No. 124159. doi: 10.1016/j.cej.2020.124159
|
[31] |
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano, 4(2010), No. 8, p. 4806. doi: 10.1021/nn1006368
|
[32] |
X.M. Sun and Y.D. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles, Angew. Chem., 116(2004), No. 5, p. 607. doi: 10.1002/ange.200352386
|
[33] |
B.H. Han, W.L. Chu, X.J. Han, et al., Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials, Carbon, 168(2020), p. 404. doi: 10.1016/j.carbon.2020.07.005
|
[34] |
D. Krishnan, K. Raidongia, J.J. Shao, and J.X. Huang, Graphene oxide assisted hydrothermal carbonization of carbon hydrates, ACS Nano, 8(2014), No. 1, p. 449. doi: 10.1021/nn404805p
|
[35] |
J.F. Li, N. Zhang, H.T. Zhao, Z.G. Li, B. Tian, and Y.C. Du, Cornstalk-derived macroporous carbon materials with enhanced microwave absorption, J. Mater. Sci. Mater. Electron., 32(2021), No. 21, p. 25758. doi: 10.1007/s10854-020-04571-5
|
[36] |
L. Zhang, Z.L. Zhang, Y.Y. Lv, et al., Reduced graphene oxide aerogels with uniformly self-assembled polyaniline nanosheets for electromagnetic absorption, ACS Appl. Nano Mater., 3(2020), No. 6, p. 5978. doi: 10.1021/acsanm.0c01115
|
[37] |
Y. Li, X.F. Liu, X.Y. Nie, et al., Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1807624. doi: 10.1002/adfm.201807624
|
[38] |
L.R. Cui, Y.H. Wang, X.J. Han, et al., Phenolic resin reinforcement: A new strategy for hollow NiCo@C microboxes against electromagnetic pollution, Carbon, 174(2021), p. 673. doi: 10.1016/j.carbon.2020.10.070
|
[39] |
X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption, Chem. Eng. J., 388(2020), art. No. 124317. doi: 10.1016/j.cej.2020.124317
|
[40] |
B. Yu, D.X. Yang, Y. Hu, J.R. He, Y.F. Chen, and W.D. He, Mo2C nanodots anchored on N-doped porous CNT microspheres as electrode for efficient Li-ion storage, Small Methods, 3(2019), No. 2, art. No. 1800287. doi: 10.1002/smtd.201800287
|
[41] |
X.J. Zhang, G.S. Wang, W.Q. Cao, et al., Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride, ACS Appl. Mater. Interfaces, 6(2014), No. 10, p. 7471. doi: 10.1021/am500862g
|
[42] |
N.N. Wu, C. Liu, D.M. Xu, et al., Enhanced electromagnetic wave absorption of three-dimensional porous Fe3O4/C composite flowers, ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 12471. doi: 10.1021/acssuschemeng.8b03097
|
[43] |
Y. Qiu, H.B. Yang, B. Wen, L. Ma, and Y. Lin, Facile synthesis of nickel/carbon nanotubes hybrid derived from metal organic framework as a lightweight, strong and efficient microwave absorber, J. Colloid Interface Sci., 590(2021), p. 561. doi: 10.1016/j.jcis.2021.02.003
|
[44] |
W.J. Zhu F. Ye, M.H. Li, et al., In-situ growth of wafer-like Ti3C2/carbon nanoparticle hybrids with excellent tunable electromagnetic absorption performance, Composites Part B, 202(2020), art. No. 108408. doi: 10.1016/j.compositesb.2020.108408
|
[45] |
F.Y. Wang, Y.L. Liu, H.H. Zhao, et al., Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics, Chem. Eng. J., 450(2022), art. No. 138160. doi: 10.1016/j.cej.2022.138160
|
[46] |
X.L. Ye, Z.F. Chen, M. Li, et al., Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment, ACS Sustainable Chem. Eng., 7(2019), No. 22, p. 18395. doi: 10.1021/acssuschemeng.9b04062
|
[47] |
H.L. Xu, X.W. Yin, X.M. Fan, et al., Constructing a tunable heterogeneous interface in bimetallic metal–organic frameworks derived porous carbon for excellent microwave absorption performance, Carbon, 148(2019), p. 421. doi: 10.1016/j.carbon.2019.03.091
|
[48] |
Y.Y. Chen, Y. Zhang, W.J. Jiang, et al., Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution, ACS Nano, 10(2016), No. 9, p. 8851. doi: 10.1021/acsnano.6b04725
|
[49] |
Y.A. Chen, P. Pötschke, J. Pionteck, B. Voit, and H.S. Qi, Multifunctional cellulose/rGO/Fe3O4 composite aerogels for electromagnetic interference shielding, ACS Appl. Mater. Interfaces, 12(2020), No. 19, p. 22088. doi: 10.1021/acsami.9b23052
|
[50] |
W.H. Gu, J.W. Tan, J.B. Chen, et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 25, p. 28727. doi: 10.1021/acsami.0c09202
|
[51] |
K. Chu, F. Wang, Y.B. Li, X.H. Wang, D.J. Huang, and Z.R. Geng, Interface and mechanical/thermal properties of graphene/copper composite with Mo2C nanoparticles grown on graphene, Composites Part A, 109(2018), p. 267. doi: 10.1016/j.compositesa.2018.03.014
|
[52] |
S.D. Ma, N.Q. Zhao, C.S. Shi, et al., Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites, Appl. Surf. Sci., 402(2017), p. 372. doi: 10.1016/j.apsusc.2017.01.078
|
[53] |
A. Sheng, Y.Q. Yang, D.X. Yan, et al., Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core–shell structure for enhanced electromagnetic wave absorption, Carbon, 167(2020), p. 530. doi: 10.1016/j.carbon.2020.05.107
|
[54] |
X.S. Deng, Y.H. Wang, L.F. Ma, et al., Construction of dual-shell Mo2C/C microsphere towards efficient electromagnetic wave absorption, Int. J. Mol. Sci., 23(2022), No. 23, art. No. 14502. doi: 10.3390/ijms232314502
|
[55] |
F.Y. Wang, P. Xu, N. Shi, et al., Polymer-bubbling for one-step synthesis of three-dimensional cobalt/carbon foams against electromagnetic pollution, J. Mater. Sci. Technol., 93(2021), p. 7. doi: 10.1016/j.jmst.2021.03.048
|
[56] |
Y. Cheng, W. Meng, Z.Y. Li, et al., Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires, J. Mater. Chem. C, 5(2017), No. 35, p. 8981. doi: 10.1039/C7TC02835K
|
[57] |
C.H. Tian, Y.C. Du, P. Xu, et al., Constructing uniform core–shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption, ACS Appl. Mater. Interfaces, 7(2015), No. 36, p. 20090. doi: 10.1021/acsami.5b05259
|
[58] |
N. He, X.F. Yang, L.X. Shi, et al., Chemical conversion of Cu2O/PPy core–shell nanowires (CSNWs): A surface/interface adjustment method for high-quality Cu/Fe/C and Cu/Fe3O4/C CSNWs with superior microwave absorption capabilities, Carbon, 166(2020), p. 205. doi: 10.1016/j.carbon.2020.05.044
|
[59] |
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
|
[60] |
F.B. Meng, H.G. Wang, F. Huang, et al., Graphene-based microwave absorbing composites: A review and prospective, Composites Part B, 137(2018), p. 260. doi: 10.1016/j.compositesb.2017.11.023
|
[61] |
L.X. Gai, H.H. Zhao, F.Y. Wang, et al., Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption, Nano Res., 15(2022), No. 10, p. 9410. doi: 10.1007/s12274-022-4695-6
|
[62] |
Z. Lu, Y. Wang, X.C. Di, N. Wang, R.R. Cheng, and L.Q. Yang, Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption, Carbon, 197(2022), p. 466. doi: 10.1016/j.carbon.2022.06.075
|
[63] |
J.B. Cheng, B.W. Liu, Y.Q. Wang, H.B. Zhao, and Y.Z. Wang, Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption, J. Mater. Sci. Technol., 130(2022), p. 157. doi: 10.1016/j.jmst.2022.05.013
|
[64] |
X. Zhang, J. Cheng, Z. Xiang, L. Cai, and W. Lu, A hierarchical Co@mesoporous C/macroporous C sheet composite derived from bimetallic MOF and oroxylum indicum for enhanced microwave absorption, Carbon, 187(2022), p. 477. doi: 10.1016/j.carbon.2021.11.044
|
[65] |
J. Feng, Y. Zong, Y. Sun, et al., Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance, Chem. Eng. J., 345(2018), p. 441. doi: 10.1016/j.cej.2018.04.006
|
[66] |
G.Y. Zhang, R.W. Shu, Y. Xie, et al., Cubic MnFe2O4 particles decorated reduced graphene oxide with excellent microwave absorption properties, Mater. Lett., 231(2018), p. 209. doi: 10.1016/j.matlet.2018.08.055
|
[67] |
Y.N. Yang, L. Xia, T. Zhang, et al., Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance, Chem. Eng. J., 352(2018), p. 510. doi: 10.1016/j.cej.2018.07.064
|
[68] |
Y. Wu, R.W. Shu, Z.Y. Li, et al., Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites, J. Alloys Compd., 784(2019), p. 887. doi: 10.1016/j.jallcom.2019.01.139
|
[69] |
M.L. Ma, W.T. Li, Z.Y. Tong, et al., 1D flower-like Fe3O4@SiO2@MnO2 nanochains inducing RGO self-assembly into aerogels for high-efficient microwave absorption, Mater. Des., 188(2020), art. No. 108462. doi: 10.1016/j.matdes.2019.108462
|
[70] |
Y. Huang, N. Zhang, M.Y. Wang, X.D. Liu, M. Zong, and P.B. Liu, Facile synthesis of hollow ZnxFe3−xO4@porous MnO2/rGO conductive network composites for tunable electromagnetic wave absorption, Ind. Eng. Chem. Res., 57(2018), No. 44, p. 14878. doi: 10.1021/acs.iecr.8b04406
|
[71] |
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, and Y.Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption, Carbon, 183(2021), p. 205. doi: 10.1016/j.carbon.2021.07.019
|
[72] |
Y. Liu, W.W. Wu, L.N. Liu, Z.J. Xing, X.M. Chen, and P. Liu, Heterointerface engineering of lightweight, worm-like SiC/B4C hybrid nanowires as excellent microwave absorbers, J. Mater. Chem. C, 7(2019), No. 32, p. 9892. doi: 10.1039/C9TC02952D
|
[73] |
P.B. Liu, S. Gao, Y. Wang, Y. Huang, Y. Wang, and J.H. Luo, Core–shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation, ACS Appl. Mater. Interfaces, 11(2019), No. 28, p. 25624. doi: 10.1021/acsami.9b08525
|
[74] |
D.W. Liu, Y.C. Du, P. Xu, et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption, J. Mater. Chem. C, 7(2019), No. 17, p. 5037. doi: 10.1039/C9TC00771G
|
[75] |
X.Q. Xu, F.T. Ran, Z.M. Fan, et al., Bimetallic metal–organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption, ACS Appl. Mater. Interfaces, 12(2020), No. 15, p. 17870. doi: 10.1021/acsami.0c01572
|
[76] |
H.H. Zhao, X.Z. Xu, Y.H. Wang, et al., Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution, Small, 16(2020), No. 43, art. No. 2003407. doi: 10.1002/smll.202003407
|