Cite this article as: |
Yingnan Yang, Yingjie Yang, Chunlin He, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, and Wenchao Yang, Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 897-907. https://doi.org/10.1007/s12613-022-2571-8 |
何春林 E-mail: helink1900@126.com
Supplementary Information-s12613-022-2571-8.docx |
[1] |
E. Peek, T. Åkre, and E. Asselin, Technical and business considerations of cobalt hydrometallurgy, JOM, 61(2009), No. 10, p. 43. doi: 10.1007/s11837-009-0151-2
|
[2] |
Q. Dehaine, L.T. Tijsseling, H.J. Glass, T. Törmänen, and A.R. Butcher, Geometallurgy of cobalt ores: A review, Miner. Eng., 160(2021), art. No. 106656. doi: 10.1016/j.mineng.2020.106656
|
[3] |
M. Chandra, D.W. Yu, Q.H. Tian, and X.Y. Guo, Recovery of cobalt from secondary resources: A comprehensive review, Miner. Process. Extr. Metall. Rev., 43(2022), 6, p. 679. doi: 10.1080/08827508.2021.1916927
|
[4] |
B. Wassink, D. Dreisinger, and J. Howard, Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms, Hydrometallurgy, 57(2000), No. 3, p. 235. doi: 10.1016/S0304-386X(00)00116-X
|
[5] |
R. Golmohammadzadeh, F. Faraji, and F. Rashchi, Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136(2018), p. 418. doi: 10.1016/j.resconrec.2018.04.024
|
[6] |
M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, and P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat. Energy, 4(2019), No. 4, p. 339. doi: 10.1038/s41560-019-0368-4
|
[7] |
W.Y. Wang, C.H. Yen, and J.K. Hsu, Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction, Sep. Sci. Technol., 55(2020), No. 16, p. 3028. doi: 10.1080/01496395.2019.1665071
|
[8] |
X.H. Zheng, Z.W. Zhu, X. Lin, et al., A mini-review on metal recycling from spent lithium ion batteries, Engineering, 4(2018), No. 3, p. 361. doi: 10.1016/j.eng.2018.05.018
|
[9] |
X.L. Zeng, J.H. Li, and N. Singh, Recycling of spent lithium-ion battery: A critical review, Crit. Rev. Environ. Sci. Technol., 44(2014), No. 10, p. 1129. doi: 10.1080/10643389.2013.763578
|
[10] |
F. Gu, J.F. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, and P. Hall, An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China, J. Clean. Prod., 161(2017), p. 765. doi: 10.1016/j.jclepro.2017.05.181
|
[11] |
L. Sun and K.Q. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage., 32(2012), No. 8, p. 1575. doi: 10.1016/j.wasman.2012.03.027
|
[12] |
A.M. Bernardes, D.C.R. Espinosa, and J.A.S. Tenório, Recycling of batteries: A review of current processes and technologies, J. Power Sources, 130(2004), No. 1-2, p. 291. doi: 10.1016/j.jpowsour.2003.12.026
|
[13] |
L. Li, J. Ge, R.J. Chen, F. Wu, S. Chen, and X.X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Manage., 30(2010), No. 12, p. 2615. doi: 10.1016/j.wasman.2010.08.008
|
[14] |
J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, and B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, 177(2008), No. 2, p. 512. doi: 10.1016/j.jpowsour.2007.11.074
|
[15] |
L. Chen, X.C. Tang, Y. Zhang, L.X. Li, Z.W. Zeng, and Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108(2011), No. 1-2, p. 80. doi: 10.1016/j.hydromet.2011.02.010
|
[16] |
M.B.J.G. Freitas, V.G. Celante, and M.K. Pietre, Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits, J. Power Sources, 195(2010), No. 10, p. 3309. doi: 10.1016/j.jpowsour.2009.11.131
|
[17] |
J.G. Kang, G. Senanayake, J. Sohn, and S.M. Shin, Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272, Hydrometallurgy, 100(2010), No. 3-4, p. 168. doi: 10.1016/j.hydromet.2009.10.010
|
[18] |
H.Y. Wang, K. Huang, Y. Zhang, et al., Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustainable Chem. Eng., 5(2017), No. 12, p. 11489. doi: 10.1021/acssuschemeng.7b02700
|
[19] |
X.P. Chen, Y.B. Chen, T. Zhou, D.P. Liu, H. Hu, and S.Y. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manage., 38(2015), p. 349. doi: 10.1016/j.wasman.2014.12.023
|
[20] |
N. Ocaña and F.J. Alguacil, Cobalt–manganese separation: The extraction of cobalt(II) from manganese sulphate solutions by cyanex 301, J. Chem. Technol. Biotechnol., 73(1998), No. 3, p. 211. doi: 10.1002/(SICI)1097-4660(1998110)73:3<211::AID-JCTB951>3.0.CO;2-Y
|
[21] |
B. Pośpiech and W. Walkowiak, Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes, Sep. Purif. Technol., 57(2007), No. 3, p. 461. doi: 10.1016/j.seppur.2006.07.005
|
[22] |
A.H. Blitz-Raith, R. Paimin, R.W. Cattrall, and S.D. Kolev, Separation of cobalt(II) from nickel(II) by solid-phase extraction into Aliquat 336 chloride immobilized in poly(vinyl chloride), Talanta, 71(2007), No. 1, p. 419. doi: 10.1016/j.talanta.2006.04.017
|
[23] |
H.C. Kao and R.S. Juang, Kinetic analysis of non-dispersive solvent extraction of concentrated Co(II) from chloride solutions with Aliquat 336: Significance of the knowledge of reaction equilibrium, J. Membr. Sci., 264(2005), No. 1-2, p. 104. doi: 10.1016/j.memsci.2005.04.026
|
[24] |
M. Majdan, J. Mierzwa, and P. Sadowski, On the separation of Co and Ni from chloride media with Aliquat 336-TBP and Aliquat 336-TOPO, Monatsh. Chem., 128(1997), No. 2, p. 113. doi: 10.1007/BF00807300
|
[25] |
N.A. Milevskii, I.V. Zinov'eva, Y.A. Zakhodyaeva, and A.A. Voshkin, Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent, Hydrometallurgy, 207(2022), art. No. 105777. doi: 10.1016/j.hydromet.2021.105777
|
[26] |
Y.Z. Wei, T. Arai, M. Kumagai, and Q.M. Feng, Adsorption behavior of various metal ions in nitrite medium and separation of some metals by anion exchange, J. Ion Exch., 14(2003), Suppl., p. 305. doi: 10.5182/JAIE.14.SUPPLEMENT_305
|
[27] |
H. Chen, S. Gu, Y.X. Guo, et al., Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3, Hydrometallurgy, 205(2021), art. No. 105746. doi: 10.1016/j.hydromet.2021.105746
|
[28] |
J.R. Ju, Y.L. Feng, H.R. Li, et al., Separation of Cu, Co, Ni and Mn from acid leaching solution of ocean cobalt-rich crust using precipitation with Na2S and solvent extraction with N235, Korean J. Chem. Eng., 39(2022), No. 3, p. 706. doi: 10.1007/s11814-021-0919-9
|
[29] |
Y.J. Yang, Y.N. Yang, C.L. He, et al., The adsorption and desorption behavior and mechanism research of cobalt, nickel and copper in nitrite–sulfuric acid system, Sep. Sci. Technol., 57(2022), No. 12, p. 1848. doi: 10.1080/01496395.2021.2021425
|
[30] |
Z.S. Liu, J. Huang, Y.M. Zhang, et al., Separation and recovery of vanadium and aluminum from oxalic acid leachate of shale by solvent extraction with Aliquat 336, Sep. Purif. Technol., 249(2020), art. No. 116867. doi: 10.1016/j.seppur.2020.116867
|
[31] |
K. Wang, G.Q. Zhang, M.Z. Luo, and M. Zeng, Separation of Co and Mn from acetic acid leaching solution of spent lithium-ion battery by Cyanex272, J. Environ. Chem. Eng., 10(2022), No. 5, art. No. 108250. doi: 10.1016/j.jece.2022.108250
|
[32] |
A.A. Nayl, M.M. Hamed, and S.E. Rizk, Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries, J. Taiwan Inst. Chem. Eng., 55(2015), p. 119. doi: 10.1016/j.jtice.2015.04.006
|
[33] |
H.E. Rizk, Y.A. El-Nadi, and N.E. El-Hefny, Extractive separation of scandium from strongly alkaline solution by quaternary ammonium salt, Solvent Extr. Ion Exch., 38(2020), No. 3, p. 350. doi: 10.1080/07366299.2020.1729327
|
[34] |
H. Zhang, C.M. Li, X.J. Chen, et al., Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water, J. Colloid Interface Sci., 615(2022), p. 110. doi: 10.1016/j.jcis.2022.01.164
|
[35] |
J.J. Meng, C.L. He, Y.J. Li, et al., Enhanced adsorption and separation of gallium using silica-based P507-TBP/SiO2-P adsorbent from sulfuric acid solution, Microporous Mesoporous Mater., 314(2021), art. No. 110859. doi: 10.1016/j.micromeso.2020.110859
|
[36] |
L.Z. Jiao, D.M. Dong, W.G. Zheng, et al., Determination of nitrite using UV absorption spectra based on multiple linear regression, Asian J. Chem., 25(2013), No. 4, p. 2273. doi: 10.14233/ajchem.2013.13840
|
[37] |
H. Benalia and D. Barkat, Solvent extraction studies of cobalt(II) by capric acid from sodium sulfate solution, J. Dispersion Sci. Technol., 38(2017), No. 9, p. 1247. doi: 10.1080/01932691.2016.1230864
|
[38] |
J. Cañón and A.V. Teplyakov, XPS characterization of cobalt impregnated SiO 2 and γ-Al2O3, Surf. Interface Anal., 53(2021), No. 5, p. 475. doi: 10.1002/sia.6935
|
[39] |
G. Kowalski, J. Pielichowski, and M. Grzesik, Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions, Sci. World J., 2014(2014), art. No. 648949. doi: 10.1155/2014/648949.
|