留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(17)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  758
  • HTML全文浏览量:  246
  • PDF下载量:  76
  • 被引次数: 0
Yingnan Yang, Yingjie Yang, Chunlin He, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, and Wenchao Yang, Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 897-907. https://doi.org/10.1007/s12613-022-2571-8
Cite this article as:
Yingnan Yang, Yingjie Yang, Chunlin He, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, and Wenchao Yang, Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 897-907. https://doi.org/10.1007/s12613-022-2571-8
引用本文 PDF XML SpringerLink
研究论文

N263在亚硝酸盐介质下从废锂离子电池正极材料浸出液中萃取分离钴

  • 通讯作者:

    何春林    E-mail: helink1900@126.com

文章亮点

  • (1) N263在NaNO2体系中选择性配位高效萃取分离Co(II)。
  • (2) 萃取过程萃取剂和钴形成的络合物为[R4NCo(NO2)3]。
  • (3) 钴的反萃率超过97.70%显著提高钴的纯度。
  • (4) 在废锂离子电池材料实际浸出液中Co(II)的萃取效率达到100%。
  • 随着废锂离子电池数量的不断增多,对废锂离子电池材料中钴金属的分离回收成为了近年来的研究热点。为了高效、高选择性地分离回收废锂离子电池正极材料浸出液中的Co(II),本文基于亚硝酸根的选择性配位和Co(II)形成络阴离子的特点,采用了季铵盐N263作为萃取剂在亚硝酸钠体系中对Co(II)进行选择性分离回收。结果表明,当萃取条件为55vol%磺化煤油,30vol% N263和15vol%异丙醇组成的有机相,水相和有机相的体积比(A/O)为2:1,萃取时间为30 min,温度为25°C,0.1 M HNO3和1 M亚硝酸钠时,Co(II)的萃取效率最高达到99.16%,而Ni(II)、Mn(II)和Li(I)的萃取效率仅为9.27%–9.80%。采用FT-IR、XPS、UV探究了N263与Co(II)的相互作用机制。研究发现,溶液中${\rm{NO}}_2^- $与Co(II)选择性结合形成阴离子络合物[Co(NO2)3],并通过N263中的Cl进行离子交换,最终溶液中的Co(II)被萃取到有机相中。根据McCabe–Thiele结果显示,当Co(II)浓度为2544 mg/L时,经过三段逆流萃取后Co(II)的萃取效率能够达到99.00%以上。在反萃实验中,当盐酸浓度为1.5 M,水相与有机相的体积比为1:1时,Co(II)的反萃取效率为91.41%。萃取剂N263经过5次萃取和反萃取循环后,Co(II)的萃取效率仍然可以达到93.89%。另外,在废锂离子电池材料实际浸出液中,可实现对Co(II)100%的高效萃取。
  • Research Article

    Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media

    + Author Affiliations
    • To effectively separate and recover Co(II) from the leachate of spent lithium-ion battery cathodes, we investigated solvent extraction with quaternary ammonium salt N263 in the sodium nitrite system. N${\rm{O}}_2^- $ combines with Co(II) to form an anion [Co(NO2)3], and it is then extracted by N263. The extraction of Co(II) is related to the concentration of N${\rm{O}}_2^- $. The extraction efficiency of Co(II) reaches the maximum of 99.16%, while the extraction efficiencies of Ni(II), Mn(II), and Li(I) are 9.27%‒9.80% under the following conditions: 30vol% of N263 and 15vol% of iso-propyl alcohol in sulfonated kerosene, the volume ratio of the aqueous-to-organic phase is 2:1, the extraction time is 30 min, and 1 M sodium nitrite in 0.1 M HNO3. The theoretical stages require for the Co(II) extraction are performed in the McCabe–Thiele diagram, and the extraction efficiency of Co(II) reaches more than 99.00% after three-stage counter-current extraction with Co(II) concentration of 2544 mg/L. When the HCl concentration is 1.5 M, the volume ratio of the aqueous-to-organic phase is 1:1, the back-extraction efficiency of Co(II) achieves 91.41%. After five extraction and back-extraction cycles, the Co(II) extraction efficiency can still reach 93.89%. The Co(II) extraction efficiency in the actual leaching solution reaches 100%.
    • loading
    • Supplementary Information-s12613-022-2571-8.docx
    • [1]
      E. Peek, T. Åkre, and E. Asselin, Technical and business considerations of cobalt hydrometallurgy, JOM, 61(2009), No. 10, p. 43. doi: 10.1007/s11837-009-0151-2
      [2]
      Q. Dehaine, L.T. Tijsseling, H.J. Glass, T. Törmänen, and A.R. Butcher, Geometallurgy of cobalt ores: A review, Miner. Eng., 160(2021), art. No. 106656. doi: 10.1016/j.mineng.2020.106656
      [3]
      M. Chandra, D.W. Yu, Q.H. Tian, and X.Y. Guo, Recovery of cobalt from secondary resources: A comprehensive review, Miner. Process. Extr. Metall. Rev., 43(2022), 6, p. 679. doi: 10.1080/08827508.2021.1916927
      [4]
      B. Wassink, D. Dreisinger, and J. Howard, Solvent extraction separation of zinc and cadmium from nickel and cobalt using Aliquat 336, a strong base anion exchanger, in the chloride and thiocyanate forms, Hydrometallurgy, 57(2000), No. 3, p. 235. doi: 10.1016/S0304-386X(00)00116-X
      [5]
      R. Golmohammadzadeh, F. Faraji, and F. Rashchi, Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136(2018), p. 418. doi: 10.1016/j.resconrec.2018.04.024
      [6]
      M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, and P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat. Energy, 4(2019), No. 4, p. 339. doi: 10.1038/s41560-019-0368-4
      [7]
      W.Y. Wang, C.H. Yen, and J.K. Hsu, Selective recovery of cobalt from the cathode materials of NMC type Li-ion battery by ultrasound-assisted acid leaching and microemulsion extraction, Sep. Sci. Technol., 55(2020), No. 16, p. 3028. doi: 10.1080/01496395.2019.1665071
      [8]
      X.H. Zheng, Z.W. Zhu, X. Lin, et al., A mini-review on metal recycling from spent lithium ion batteries, Engineering, 4(2018), No. 3, p. 361. doi: 10.1016/j.eng.2018.05.018
      [9]
      X.L. Zeng, J.H. Li, and N. Singh, Recycling of spent lithium-ion battery: A critical review, Crit. Rev. Environ. Sci. Technol., 44(2014), No. 10, p. 1129. doi: 10.1080/10643389.2013.763578
      [10]
      F. Gu, J.F. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, and P. Hall, An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China, J. Clean. Prod., 161(2017), p. 765. doi: 10.1016/j.jclepro.2017.05.181
      [11]
      L. Sun and K.Q. Qiu, Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage., 32(2012), No. 8, p. 1575. doi: 10.1016/j.wasman.2012.03.027
      [12]
      A.M. Bernardes, D.C.R. Espinosa, and J.A.S. Tenório, Recycling of batteries: A review of current processes and technologies, J. Power Sources, 130(2004), No. 1-2, p. 291. doi: 10.1016/j.jpowsour.2003.12.026
      [13]
      L. Li, J. Ge, R.J. Chen, F. Wu, S. Chen, and X.X. Zhang, Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries, Waste Manage., 30(2010), No. 12, p. 2615. doi: 10.1016/j.wasman.2010.08.008
      [14]
      J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, and B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, 177(2008), No. 2, p. 512. doi: 10.1016/j.jpowsour.2007.11.074
      [15]
      L. Chen, X.C. Tang, Y. Zhang, L.X. Li, Z.W. Zeng, and Y. Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries, Hydrometallurgy, 108(2011), No. 1-2, p. 80. doi: 10.1016/j.hydromet.2011.02.010
      [16]
      M.B.J.G. Freitas, V.G. Celante, and M.K. Pietre, Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits, J. Power Sources, 195(2010), No. 10, p. 3309. doi: 10.1016/j.jpowsour.2009.11.131
      [17]
      J.G. Kang, G. Senanayake, J. Sohn, and S.M. Shin, Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272, Hydrometallurgy, 100(2010), No. 3-4, p. 168. doi: 10.1016/j.hydromet.2009.10.010
      [18]
      H.Y. Wang, K. Huang, Y. Zhang, et al., Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustainable Chem. Eng., 5(2017), No. 12, p. 11489. doi: 10.1021/acssuschemeng.7b02700
      [19]
      X.P. Chen, Y.B. Chen, T. Zhou, D.P. Liu, H. Hu, and S.Y. Fan, Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manage., 38(2015), p. 349. doi: 10.1016/j.wasman.2014.12.023
      [20]
      N. Ocaña and F.J. Alguacil, Cobalt–manganese separation: The extraction of cobalt(II) from manganese sulphate solutions by cyanex 301, J. Chem. Technol. Biotechnol., 73(1998), No. 3, p. 211. doi: 10.1002/(SICI)1097-4660(1998110)73:3<211::AID-JCTB951>3.0.CO;2-Y
      [21]
      B. Pośpiech and W. Walkowiak, Separation of copper(II), cobalt(II) and nickel(II) from chloride solutions by polymer inclusion membranes, Sep. Purif. Technol., 57(2007), No. 3, p. 461. doi: 10.1016/j.seppur.2006.07.005
      [22]
      A.H. Blitz-Raith, R. Paimin, R.W. Cattrall, and S.D. Kolev, Separation of cobalt(II) from nickel(II) by solid-phase extraction into Aliquat 336 chloride immobilized in poly(vinyl chloride), Talanta, 71(2007), No. 1, p. 419. doi: 10.1016/j.talanta.2006.04.017
      [23]
      H.C. Kao and R.S. Juang, Kinetic analysis of non-dispersive solvent extraction of concentrated Co(II) from chloride solutions with Aliquat 336: Significance of the knowledge of reaction equilibrium, J. Membr. Sci., 264(2005), No. 1-2, p. 104. doi: 10.1016/j.memsci.2005.04.026
      [24]
      M. Majdan, J. Mierzwa, and P. Sadowski, On the separation of Co and Ni from chloride media with Aliquat 336-TBP and Aliquat 336-TOPO, Monatsh. Chem., 128(1997), No. 2, p. 113. doi: 10.1007/BF00807300
      [25]
      N.A. Milevskii, I.V. Zinov'eva, Y.A. Zakhodyaeva, and A.A. Voshkin, Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent, Hydrometallurgy, 207(2022), art. No. 105777. doi: 10.1016/j.hydromet.2021.105777
      [26]
      Y.Z. Wei, T. Arai, M. Kumagai, and Q.M. Feng, Adsorption behavior of various metal ions in nitrite medium and separation of some metals by anion exchange, J. Ion Exch., 14(2003), Suppl., p. 305. doi: 10.5182/JAIE.14.SUPPLEMENT_305
      [27]
      H. Chen, S. Gu, Y.X. Guo, et al., Leaching of cathode materials from spent lithium-ion batteries by using a mixture of ascorbic acid and HNO3, Hydrometallurgy, 205(2021), art. No. 105746. doi: 10.1016/j.hydromet.2021.105746
      [28]
      J.R. Ju, Y.L. Feng, H.R. Li, et al., Separation of Cu, Co, Ni and Mn from acid leaching solution of ocean cobalt-rich crust using precipitation with Na2S and solvent extraction with N235, Korean J. Chem. Eng., 39(2022), No. 3, p. 706. doi: 10.1007/s11814-021-0919-9
      [29]
      Y.J. Yang, Y.N. Yang, C.L. He, et al., The adsorption and desorption behavior and mechanism research of cobalt, nickel and copper in nitrite–sulfuric acid system, Sep. Sci. Technol., 57(2022), No. 12, p. 1848. doi: 10.1080/01496395.2021.2021425
      [30]
      Z.S. Liu, J. Huang, Y.M. Zhang, et al., Separation and recovery of vanadium and aluminum from oxalic acid leachate of shale by solvent extraction with Aliquat 336, Sep. Purif. Technol., 249(2020), art. No. 116867. doi: 10.1016/j.seppur.2020.116867
      [31]
      K. Wang, G.Q. Zhang, M.Z. Luo, and M. Zeng, Separation of Co and Mn from acetic acid leaching solution of spent lithium-ion battery by Cyanex272, J. Environ. Chem. Eng., 10(2022), No. 5, art. No. 108250. doi: 10.1016/j.jece.2022.108250
      [32]
      A.A. Nayl, M.M. Hamed, and S.E. Rizk, Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries, J. Taiwan Inst. Chem. Eng., 55(2015), p. 119. doi: 10.1016/j.jtice.2015.04.006
      [33]
      H.E. Rizk, Y.A. El-Nadi, and N.E. El-Hefny, Extractive separation of scandium from strongly alkaline solution by quaternary ammonium salt, Solvent Extr. Ion Exch., 38(2020), No. 3, p. 350. doi: 10.1080/07366299.2020.1729327
      [34]
      H. Zhang, C.M. Li, X.J. Chen, et al., Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water, J. Colloid Interface Sci., 615(2022), p. 110. doi: 10.1016/j.jcis.2022.01.164
      [35]
      J.J. Meng, C.L. He, Y.J. Li, et al., Enhanced adsorption and separation of gallium using silica-based P507-TBP/SiO2-P adsorbent from sulfuric acid solution, Microporous Mesoporous Mater., 314(2021), art. No. 110859. doi: 10.1016/j.micromeso.2020.110859
      [36]
      L.Z. Jiao, D.M. Dong, W.G. Zheng, et al., Determination of nitrite using UV absorption spectra based on multiple linear regression, Asian J. Chem., 25(2013), No. 4, p. 2273. doi: 10.14233/ajchem.2013.13840
      [37]
      H. Benalia and D. Barkat, Solvent extraction studies of cobalt(II) by capric acid from sodium sulfate solution, J. Dispersion Sci. Technol., 38(2017), No. 9, p. 1247. doi: 10.1080/01932691.2016.1230864
      [38]
      J. Cañón and A.V. Teplyakov, XPS characterization of cobalt impregnated SiO 2 and γ-Al2O3, Surf. Interface Anal., 53(2021), No. 5, p. 475. doi: 10.1002/sia.6935
      [39]
      G. Kowalski, J. Pielichowski, and M. Grzesik, Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions, Sci. World J., 2014(2014), art. No. 648949. doi: 10.1155/2014/648949.

    Catalog


    • /

      返回文章
      返回