留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  863
  • HTML全文浏览量:  233
  • PDF下载量:  52
  • 被引次数: 0
Tongtong Cao, Yong Zhu, Yuyang Gao, Yan Yang, Gang Zhou, Xiaofei Cui, Chen Wen, Bin Jiang, Xiaodong Peng, and Fusheng Pan, Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 949-958. https://doi.org/10.1007/s12613-022-2572-7
Cite this article as:
Tongtong Cao, Yong Zhu, Yuyang Gao, Yan Yang, Gang Zhou, Xiaofei Cui, Chen Wen, Bin Jiang, Xiaodong Peng, and Fusheng Pan, Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 949-958. https://doi.org/10.1007/s12613-022-2572-7
引用本文 PDF XML SpringerLink
研究论文

双相Mg–8Li–4Zn–1Mn合金的微观组织、力学性能和阻尼性能的协同调控与优化

  • 通讯作者:

    高瑜阳    E-mail: gaoyuyang@cqu.edu.cn

    杨艳    E-mail: yanyang@cqu.edu.cn

文章亮点

  • (1) 系统研究了双相Mg–8Li–4Zn–1Mn合金在热挤压变形过程中的组织演变机理,挤压变形过程中合金内部发生动态再结晶,合金中第二相被明显细化。合金晶粒尺寸由铸态的50 μm细化到5.86 μm。
  • (2) 挤压变形后,双相Mg–8Li–4Zn–1Mn合金的力学性能显著改善,合金的抗拉强度和延伸率分别达到了208 MPa和32.3%,在合金力学性能显著提升的同时,合金保持良好的阻尼性能。
  • (3) 探讨了挤压态双相Mg–8Li–4Zn–1Mn合金的力学性能和阻尼性能协同调控的机理,基于合金化和热变形工艺协同调控,实现了双相Mg–Li合金微观组织-力学-阻尼性能之间的协同调控。
  • 镁锂合金是目前最轻的金属工程结构材料,具有密度低、比强度高、阻尼性能好等优点,在航空航天、兵器军工、3C等领域具有广阔的应用前景。但是现有的镁锂合金绝对强度较低,而现有提升镁合金强度的方式通常带来其阻尼性能的降低,因此,实现镁合金强度与阻尼的协同调控是研究者亟待解决的问题。本文旨在研究通过热挤压来实现双相Mg–Li–Zn–Mn合金的微观组织调控与优化,以期实现合金力学性能和阻尼性能协同调控。结果表明:Mg–8Li–4Zn–1Mn合金主要由α-Mg、β-Li、Mg–Li–Zn相和单质Mn组成。热挤压过程中,合金内部发生动态再结晶,合金的晶粒尺寸由铸态的50 μm细化到5.86 μm。挤压变形后,细小的析出相均匀分布在Mg–8Li–4Zn–1Mn合金中。挤压态合金的屈服强度( YS )、抗拉强度( UTS )和伸长率( EL )分别达到156 MPa、208 MPa和32.3 %,较铸态合金显著提升。挤压态和铸态Mg–8Li–4Zn–1Mn合金均呈现出优异的阻尼性能,在应变振幅为2 × 10−3时的阻尼值 ( Q−1 )分别为0.030和0.033,合金阻尼性能无明显变化。热挤压变形可以显著提高Mg–8Li–4Zn–1Mn合金的力学性能,而阻尼性能无明显变化,这表明基于合金化和热变形工艺协同调控,可以实现双相镁锂合金微观组织–力学–阻尼性能之间的协同调控,研究为后续高强高阻尼镁合金的研发提供重要的理论指导。
  • Research Article

    Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys

    + Author Affiliations
    • Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated. The results show that the Mg–8Li–4Zn–1Mn alloy is mainly composed of α-Mg, β-Li, Mg–Li–Zn, and Mn phases. The microstructure of the test alloy is refined owing to dynamic recrystallization (DRX) during hot extrusion. After hot extrusion, the crushed precipitates are uniformly distributed in the test alloy. The yield strength (YS), ultimate tensile strength (UTS), and elongation (EL) of as-extruded alloy reach 156 MPa, 208 MPa, and 32.3%, respectively, which are much better than that of as-cast alloy. Furthermore, the as-extruded and as-cast alloys both exhibit superior damping capacities, with the damping capacity ($ {Q}^{-1} $) of 0.030 and 0.033 at the strain amplitude of 2 × 10−3, respectively. The mechanical properties of the test alloy can be significantly improved by hot extrusion, whereas the damping capacities have no noticeable change, which indicates that the duplex-structured Mg–Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion.
    • loading
    • [1]
      Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
      [2]
      L.X. Hong, R.X. Wang, and X.B. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1570. doi: 10.1007/s12613-021-2264-8
      [3]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [4]
      J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
      [5]
      S.Y. Jin, X.C. Ma, R.Z. Wu, et al., Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
      [6]
      T.C. Chang, J.Y. Wang, C.L. Chu, and S.Lee, Mechanical properties and microstructures of various Mg–Li alloys, Mater. Lett., 60(2006), No. 27, p. 3272. doi: 10.1016/j.matlet.2006.03.052
      [7]
      Y.H. Kim, J.H. Kim, H.S. Yu, J.W. Choi, and H.T.Son, Microstructure and mechanical properties of Mg–xLi–3Al–1Sn–0.4Mn alloys (x = 5, 8 and 11wt%), J. Alloys Compd., 583(2014), p. 15. doi: 10.1016/j.jallcom.2013.08.154
      [8]
      J.F. Wang, D.D. Xu, R.P. Lu, and F.S. Pan, Damping properties of as-cast Mg–xLi–1Al alloys with different phase composition, Trans. Nonferrous Met. Soc. China, 24(2014), No. 2, p. 334. doi: 10.1016/S1003-6326(14)63065-X
      [9]
      R.P. Lu, K. Jiao, N.T. Li, H. Hou, J.F. Wang, and Y.H. Zhao, Microstructure and damping properties of LPSO phase dominant Mg–Ni–Y and Mg–Zn–Ni–Y alloys, J. Magnes. Alloys, (2022). DOI: 10.1016/j.jma.2022.06.013
      [10]
      X.F. Huang, W.Z. Zhang, J.F. Wang, and W.W. Wei, A transmission electron microscopy investigation of defects in an Mg–Cu–Mn–Zn–Y damping alloy, J. Alloys Compd., 516(2012), p. 186. doi: 10.1016/j.jallcom.2011.12.035
      [11]
      C. Xu, J.H. Zhang, S.J. Liu, et al., Microstructure, mechanical and damping properties of Mg–Er–Gd–Zn alloy reinforced with stacking faults, Mater. Des., 79(2015), p. 53. doi: 10.1016/j.matdes.2015.04.037
      [12]
      H.S. Jiang, X.G. Qiao, M.Y. Zheng, K. Wu, C. Xu, and S. Kamado, The partial substitution of Y with Gd on microstructures and mechanical properties of as-cast and as-extruded Mg–10Zn–6Y–0.5Zr alloy, Mater. Charact., 135(2018), p. 96. doi: 10.1016/j.matchar.2017.11.025
      [13]
      H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 3, p. 490. doi: 10.1007/s12613-021-2275-5
      [14]
      K. Guan, D. Egusa, E. Abe, et al., Microstructures and mechanical properties of as-cast Mg–Sm–Zn–Zr alloys with varying Gd contents, J. Magnes. Alloys, 10(2022), No. 5, p. 1220. doi: 10.1016/j.jma.2021.09.013
      [15]
      Z.Z. Jin, M. Zha, S.Q. Wang, et al., Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility, J. Magnes. Alloys, 10(2022), No. 5, p. 1191. doi: 10.1016/j.jma.2022.04.002
      [16]
      Y.T. Tang, C. Zhang, L.B. Ren, et al., Effects of Y content and temperature on the damping capacity of extruded Mg–Y sheets, J. Magnes. Alloys, 7(2019), No. 3, p. 522. doi: 10.1016/j.jma.2019.05.003
      [17]
      J.F. Wang, P.F. Song, S. Gao, X.F. Huang, Z.Z. Shi, and F.S. Pan, Effects of Zn on the microstructure, mechanical properties, and damping capacity of Mg–Zn–Y–Zr alloys, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5914. doi: 10.1016/j.msea.2011.04.002
      [18]
      L.H. Li, H.S. Cao, F.G. Qi, et al., Effect of heat treatment on microstructure and mechanical properties of Mg–5Zn–1Mn alloy tube, Metals, 10(2020), No. 3, art. No. 301. doi: 10.3390/met10030301
      [19]
      X. Ye, H.S. Cao, F.G. Qi, et al., Effect of Y addition on the microstructure and mechanical properties of ZM31 alloy, Materials, 13(2020), No. 3, art. No. 583. doi: 10.3390/ma13030583
      [20]
      C.H. Hou, F.G. Qi, Z.S. Ye, N. Zhao, D.F. Zhang, and X.P. Ouyang, Effects of Mn addition on the microstructure and mechanical properties of Mg–Zn–Sn alloys, Mater. Sci. Eng. A, 774(2020), art. No. 138933. doi: 10.1016/j.msea.2020.138933
      [21]
      R.P. Lu, K. Jiao, Y.H. Zhao, K. Li, K.Y. Yao, and H. Hou, Influence of long-period-stacking ordered structure on the damping capacities and mechanical properties of Mg–Zn–Y–Mn as-cast alloys, Materials, 13(2020), No. 20, art. No. 4654. doi: 10.3390/ma13204654
      [22]
      S.Q. Chen, X.P. Dong, R. Ma, L. Zhang, H. Wang, and Z.T. Fan, Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg–1%Mn based alloy, Mater. Sci. Eng. A, 551(2012), p. 87. doi: 10.1016/j.msea.2012.04.098
      [23]
      X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, and C.L. Cui, Microstructures and properties of superlight Mg–Li–Al–Zn wrought alloys, J. Alloys Compd., 486(2009), No. 1-2, p. 722. doi: 10.1016/j.jallcom.2009.07.047
      [24]
      J.F. Wang, Z.S. Wu, S. Gao, et al., Optimization of mechanical and damping properties of Mg–0.6Zr alloy by different extrusion processing, J. Magnes. Alloys, 3(2015), No. 1, p. 79. doi: 10.1016/j.jma.2015.02.001
      [25]
      G. Zhou, Y. Yang, L. Sun, et al., Tailoring the microstructure, mechanical properties and damping capacities of Mg–4Li–3Al–0.3Mn alloy via hot extrusion, J. Mater. Res. Technol., 19(2022), p. 4197. doi: 10.1016/j.jmrt.2022.06.100
      [26]
      S. Feng, W.C. Liu, J. Zhao, G.H. Wu, H.B. Zhang, W.J. Ding, Effect of extrusion ratio on microstructure and mechanical properties of Mg–8Li–3Al–2Zn–0.5Y alloy with duplex structure, Mater. Sci. Eng. A, 692(2017), p. 9. doi: 10.1016/j.msea.2017.03.059
      [27]
      G. Zhou, Y. Yang, H.Z. Zhang, et al., Microstructure and strengthening mechanism of hot-extruded ultralight Mg–Li–Al–Sn alloys with high strength, J. Mater. Sci. Technol., 103(2022), p. 186. doi: 10.1016/j.jmst.2021.07.009
      [28]
      H. Ji, G.H. Wu, W.C. Liu, X.L. Zhang, L. Zhang, and M.X. Wang, Origin of the age-hardening and age-softening response in Mg–Li–Zn based alloys, Acta Mater., 226(2022), art. No. 117673. doi: 10.1016/j.actamat.2022.117673
      [29]
      H. Ji, G.H. Wu, W.C. Liu, X.L. Liang, G.L. Liao, and D.H. Ding, Microstructure characterization and mechanical properties of the as-cast and as-extruded Mg–xLi–5Zn–0.5Er (x = 8, 10 and 12 wt%) alloys, Mater. Charact., 159(2020), art. No. 110008. doi: 10.1016/j.matchar.2019.110008
      [30]
      H.J. Deng, Y. Yang, M.M. Li, et al., Effect of Mn content on the microstructure and mechanical properties of Mg–6Li–4Zn–xMn alloys, Prog. Nat. Sci.: Mater. Int., 31(2021), No. 4, p. 583. doi: 10.1016/j.pnsc.2021.06.001
      [31]
      A. Yamamoto, T. Ashida, Y. Kouta, K.B. Kim, S. Fukumoto, and H.Tsubakino, Precipitation in Mg–(4–13)%Li–(4–5)%Zn ternary alloys, Mater. Trans., 44(2003), No. 4, p. 619. doi: 10.2320/matertrans.44.619
      [32]
      H. Ji, G.H. Wu, W.C. Liu, J.W. Sun, and W.J. Ding, Role of extrusion temperature on the microstructure evolution and tensile properties of an ultralight Mg–Li–Zn–Er alloy, J. Alloys Compd., 876(2021), art. No. 160181. doi: 10.1016/j.jallcom.2021.160181
      [33]
      Y.J. Ma, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen, Microstructure, mechanical properties and damping capacity of as-extruded Mg–1.5Gd alloys containing rare-earth textures, Mater. Charact., 189(2022), art. No. 111969. doi: 10.1016/j.matchar.2022.111969
      [34]
      H.F. Sun, C.J. Li, and W.B. Fang, Evolution of microstructure and mechanical properties of Mg–3.0Zn–0.2Ca–0.5Y alloy by extrusion at various temperatures, J. Mater. Process. Technol., 229(2016), p. 633. doi: 10.1016/j.jmatprotec.2015.10.021
      [35]
      S.F. Luo, N. Wang, Y. Wang, et al., Texture, microstructure and mechanical properties of an extruded Mg–10Gd–1Zn–0.4Zr alloy: Role of microstructure prior to extrusion, Mater. Sci. Eng. A, 849(2022), art. No. 143476. doi: 10.1016/j.msea.2022.143476
      [36]
      Z.M. Hua, B.Y. Wang, C. Wang, et al., Solute segregation assisted superplasticity in a low-alloyed Mg–Zn–Ca–Sn–Mn alloy, Materialia, 14(2020), art. No. 100918. doi: 10.1016/j.mtla.2020.100918
      [37]
      Q.H. Wang, H.W. Zhai, L.T. Liu, et al., Exploiting an as-extruded fine-grained Mg–Bi–Mn alloy with strength-ductility synergy via dilute Zn addition, J. Alloys Compd., 924(2022), art. No. 166337. doi: 10.1016/j.jallcom.2022.166337
      [38]
      M. Yuan, C. He, J. Zhao, et al., Microstructure evolution and mechanical properties of the Mg-Sm–Gd–Zn–Zr alloy during extrusion, J. Mater. Res. Technol., 15(2021), p. 2518. doi: 10.1016/j.jmrt.2021.09.080
      [39]
      J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater., 48(2003), No. 8, p. 1009. doi: 10.1016/S1359-6462(02)00497-9
      [40]
      P.F. Qin, Q. Yang, Y.Y. He, et al., Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy, Rare Met., 40(2021), No. 10, p. 2956. doi: 10.1007/s12598-020-01661-5
      [41]
      Z. Zhang, J.H. Zhang, J.S. Xie, et al., Developing a low-alloyed fine-grained Mg alloy with high strength-ductility based on dislocation evolution and grain boundary segregation, Scripta Mater., 209(2022), art. No. 114414. doi: 10.1016/j.scriptamat.2021.114414
      [42]
      A. Granato and K. Lücke, Application of dislocation theory to internal friction phenomena at high frequencies, J. Appl. Phys., 27(1956), No. 7, p. 789. doi: 10.1063/1.1722485
      [43]
      J.H. Jun, Damping behavior of Mg–Zn–Al casting alloys, Mater. Sci. Eng. A, 665(2016), p. 86. doi: 10.1016/j.msea.2016.04.024
      [44]
      B.K. Sugimoto, K. Niiya, T. Okamoto, and K. Kishitake, A study of damping capacity in magnesium alloys, Trans. JIM, 18(1977), No. 3, p. 277. doi: 10.2320/matertrans1960.18.277
      [45]
      X.P. Zhou, H.G. Yan, J.H. Chen, et al., Effects of the β1′ precipitates on mechanical and damping properties of ZK60 magnesium alloy, Mater. Sci. Eng. A, 804(2021), art. No. 140730. doi: 10.1016/j.msea.2020.140730
      [46]
      D. Wang, X.C. Ma, R.Z. Wu, et al., Effect of extrusion plus rolling on damping capacity and mechanical properties of Mg–Y–Er–Zn–Zr alloy, Mater. Sci. Eng. A, 830(2022), art. No. 142298. doi: 10.1016/j.msea.2021.142298
      [47]
      X.S. Hu, K. Wu, M.Y. Zheng, W.M. Gan, and X.J. Wang, Low frequency damping capacities and mechanical properties of Mg–Si alloys, Mater. Sci. Eng. A, 452-453(2007), p. 374. doi: 10.1016/j.msea.2006.10.099
      [48]
      D.Q. Wan, J.C. Wang, G.F. Wang, et al., Effect of Mn on damping capacities, mechanical properties, and corrosion behaviour of high damping Mg–3wt.%Ni based alloy, Mater. Sci. Eng. A, 494(2008), No. 1-2, p. 139. doi: 10.1016/j.msea.2008.04.011
      [49]
      J.H. Wang, Y. Jin, R.Z. Wu, et al., Simultaneous improvement of strength and damping capacities of Mg–8Li–6Y–2Zn alloy by heat treatment and hot rolling, J. Alloys Compd., 927(2022), art. No. 167027. doi: 10.1016/j.jallcom.2022.167027

    Catalog


    • /

      返回文章
      返回