留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(17)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  650
  • HTML全文浏览量:  214
  • PDF下载量:  46
  • 被引次数: 0
Haojun Wu, Min Gong, Renshu Yang, Xiaodong Wu, and Xiangyu Liu, Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1025-1037. https://doi.org/10.1007/s12613-022-2575-4
Cite this article as:
Haojun Wu, Min Gong, Renshu Yang, Xiaodong Wu, and Xiangyu Liu, Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1025-1037. https://doi.org/10.1007/s12613-022-2575-4
引用本文 PDF XML SpringerLink
研究论文

基于电脑凿岩台车地下精准爆破的炮孔孔位双断面智能规划方法

  • 通讯作者:

    龚敏    E-mail: gongmustb@163.com

文章亮点

  • (1) 研发了适用于矿山小断面岩巷的电脑凿岩台车及智能钻爆技术。
  • (2) 总结并提出了使同类炮孔抵抗线均匀性最大化的分区规划方法。
  • (3) 采用线路偏移和迭代的方法获得了准确的炮孔孔位规划结果。
  • 由于钻孔装备技术水平限制,地下爆破设计孔位与实际成孔误差较大且同类孔抵抗线不均匀,导致爆破效率低下,难以满足精准地下爆破的需要。在新一代高精度钻孔定位的电脑凿岩台车出现后以计算程序解决爆破设计同类孔抵抗线不均匀问题,是实现地下矿山智能高效爆破的必备条件。为此提出基于电脑凿岩台车爆破孔位参数的双断面程控规划方法。将整个断面分为均匀区域和不均匀区域两部分,同时考虑了炮孔孔口、孔底抵抗线均匀问题。在不均匀区域内结合区域边缘特征和网格化分割方法,制定多重限定条件优选孔距,实现同类炮孔抵抗线均匀最大化;在均匀区域内采用递归和迭代算法实现孔位坐标和角度计算。为实现智能设计,本方法用程序语言替代了传统图形规划。作为案例,在4.8 m宽3.6 m高工作面内完成所有炮孔的完整规划。在抵抗线不均匀区域内,与用CAD方法得到的图纸相比,本文规划结果在炮孔抵抗线标准差方面提升了40%。通过改善孔位布设,促进了地下爆破向精准、高效和智能方向的发展。
  • Research Article

    Double-face intelligent hole position planning method for precision blasting in roadways using a computer-controlled drill jumbo

    + Author Affiliations
    • To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment, we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo. The cross-section splits into even and uneven areas. It also considers the uneven burden at the hole’s entrance and bottom. In the uneven area, various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity, combined with the features of the area edges and grid-based segmentation methods. The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms. As a case, this method presents all holes in a 4.8 m wide and 3.6 m high cross-section. Compared with the design produced by the drawing method, our planning in the uneven area improved the standard deviation of the hole burden by 40%. The improved hole layout facilitates the evolution of precise, efficient, and intelligent blasting in underground mines.
    • loading
    • Supplementary Information-s12613-022-2575-4.docx
    • [1]
      P. Xu, R.S. Yang, J.J. Zuo, et al., Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 705. doi: 10.1007/s12613-022-2464-x
      [2]
      Y.T. Gao, T.H. Wu, and Y. Zhou, Application and prospective of 3D printing in rock mechanics: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 1. doi: 10.1007/s12613-020-2119-8
      [3]
      G. Ganesan and A.K. Mishra, Assessment of drilling inaccuracy and delineation of constructional and geological overbreak, Tunnelling Underground Space Technol., 108(2021), art. No. 103730. doi: 10.1016/j.tust.2020.103730
      [4]
      J. Navarro, P. Segarra, J.A. Sanchidrián, R. Castedo, and L.M. López, Assessment of drilling deviations in underground operations, Tunnelling Underground Space Technol., 83(2019), p. 254. doi: 10.1016/j.tust.2018.10.003
      [5]
      K. Soroush, Y. Mehdi, and E. Arash, Trend analysis and comparison of basic parameters for tunnel blast design models, Int. J. Min. Sci. Technol., 25(2015), No. 4, p. 595. doi: 10.1016/j.ijmst.2015.05.012
      [6]
      J. Liu, P.Y. Sun, F.X. Liu, and M.S. Zhao, Design and optimization for bench blast based on Voronoi diagram, Int. J. Rock Mech. Min. Sci., 66(2014), p. 30. doi: 10.1016/j.ijrmms.2013.11.012
      [7]
      M.P. Roy, P.K. Singh, M. Sarim, and L.S. Shekhawat, Blast design and vibration control at an underground metal mine for the safety of surface structures, Int. J. Rock Mech. Min. Sci., 83(2016), p. 107. doi: 10.1016/j.ijrmms.2016.01.003
      [8]
      M. Galende-Hernández, M. Menéndez, M.J. Fuente, and G.I. Sainz-Palmero, Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front, Autom. Constr., 93(2018), p. 325. doi: 10.1016/j.autcon.2018.05.019
      [9]
      Y. Kim and A. Bruland, Analysis and evaluation of tunnel contour quality index, Autom. Constr., 99(2019), p. 223. doi: 10.1016/j.autcon.2018.12.008
      [10]
      E. Costamagna, C. Oggeri, P. Segarra, R. Castedo, and J. Navarro, Assessment of contour profile quality in D&B tunnelling, Tunnelling Underground Space Technol., 75(2018), p. 67. doi: 10.1016/j.tust.2018.02.007
      [11]
      J. Karliński, E. Rusiński, and T. Lewandowski, New generation automated drilling machine for tunnelling and underground mining work, Autom. Constr., 17(2008), No. 3, p. 224. doi: 10.1016/j.autcon.2007.05.007
      [12]
      L. Lin, Y.C. Lv, H. Guo, et al., Load validity discrimination for telescopic boom of rock drilling jumbo, Autom. Constr., 141(2022), art. No. 104439. doi: 10.1016/j.autcon.2022.104439
      [13]
      Y. Kim and H.K. Moon, Application of the guideline for overbreak control in granitic rock masses in Korean tunnels, Tunnelling Underground Space Technol., 35(2013), p. 67. doi: 10.1016/j.tust.2012.11.008
      [14]
      Y.J. Wang, C. Fang, Q.M. Jiang, and S.N. Ahmed, The automatic drilling system of 6R-2P mining drill jumbos, Adv. Mech. Eng., 7(2015), No. 2, art. No. 504861. doi: 10.1155/2015/504861
      [15]
      J. Navarro, J.A. Sanchidrian, P. Segarra, R. Castedo, C. Paredes, and L.M. Lopez, On the mutual relations of drill monitoring variables and the drill control system in tunneling operations, Tunnelling Underground Space Technol., 72(2018), p. 294. doi: 10.1016/j.tust.2017.10.011
      [16]
      H.B. Amnieh, A. Siamaki, and S. Soltani, Design of blasting pattern in proportion to the peak particle velocity (PPV): Artificial neural networks approach, Saf. Sci., 50(2012), No. 9, p. 1913. doi: 10.1016/j.ssci.2012.05.008
      [17]
      N.K. Bhagat, A.K. Mishra, R.K. Singh, C. Sawmliana, and P.K. Singh, Application of logistic regression, CART and random forest techniques in prediction of blast-induced slope failure during reconstruction of railway rock-cut slopes, Eng. Fail. Anal., 137(2022), art. No. 106230. doi: 10.1016/j.engfailanal.2022.106230
      [18]
      N. Ahsan, S. Scheding, S.T. Monteiro, R. Leung, C. McHugh, and D. Robinson, Adaptive sampling applied to blast-hole drilling in surface mining, Int. J. Rock Mech. Min. Sci., 75(2015), p. 244. doi: 10.1016/j.ijrmms.2015.01.009
      [19]
      Q. Shen, Y.J. Wang, R.L. Cao, and Y.R. Liu, Efficiency evaluation of a percussive drill rig using rate-energy ratio based on rock drilling tests, J. Pet. Sci. Eng., 217(2022), art. No. 110873. doi: 10.1016/j.petrol.2022.110873
      [20]
      M.N. Wang, S.G. Zhao, J.J. Tong, et al., Intelligent classification model of surrounding rock of tunnel using drilling and blasting method, Underground Space, 6(2021), No. 5, p. 539. doi: 10.1016/j.undsp.2020.10.001
      [21]
      X.D. Wu, M. Gong, H.J. Wu, and X.Y. Liu, Parameter calculation of the initiating circuit with mixed use of nonel detonators and electronic detonators in tunnel controlled-blasting, Tunnelling Underground Space Technol., 113(2021), art. No. 103975. doi: 10.1016/j.tust.2021.103975
      [22]
      H.X. Fu, L.N.Y. Wong, Y. Zhao, Z. Shen, C.P. Zhang, and Y.Z. Li, Comparison of excavation damage zones resulting from blasting with nonel detonators and blasting with electronic detonators, Rock Mech. Rock Eng., 47(2014), No. 2, p. 809. doi: 10.1007/s00603-013-0419-2
      [23]
      X.Y. Qiu, X.Z. Shi, Y.G. Gou, J. Zhou, H. Chen, and X.F. Huo, Short-delay blasting with single free surface: Results of experimental tests, Tunnelling Underground Space Technol., 74(2018), p. 119. doi: 10.1016/j.tust.2018.01.014
      [24]
      S. Zare and A. Bruland, Comparison of tunnel blast design models, Tunnelling Underground Space Technol., 21(2006), No. 5, p. 533. doi: 10.1016/j.tust.2005.09.001
      [25]
      A.H. Salum and V.M.S.R. Murthy, Optimising blast pulls and controlling blast-induced excavation damage zone in tunnelling through varied rock classes, Tunnelling Underground Space Technol., 85(2019), p. 307. doi: 10.1016/j.tust.2018.11.029
      [26]
      J.G. Kim and J.J. Song, Abrasive water jet cutting methods for reducing blast-induced ground vibration in tunnel excavation, Int. J. Rock Mech. Min. Sci., 75(2015), p. 147. doi: 10.1016/j.ijrmms.2014.12.011
      [27]
      X.X. Tian, Z.P. Song, and J.B. Wang, Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology, Soil Dyn. Earthquake Eng., 126(2019), art. No. 105813. doi: 10.1016/j.soildyn.2019.105813
      [28]
      D. Huang, S. Cui, and X.Q. Li, Wavelet packet analysis of blasting vibration signal of mountain tunnel, Soil Dyn. Earthquake Eng., 117(2019), p. 72. doi: 10.1016/j.soildyn.2018.11.025

    Catalog


    • /

      返回文章
      返回