留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  499
  • HTML全文浏览量:  157
  • PDF下载量:  30
  • 被引次数: 0
Hui Tong, Yi Li, Gaoqiang Mao, Chaolei Wang, Wanjing Yu, Yong Liu, and Mudan Liu, Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1162-1170. https://doi.org/10.1007/s12613-022-2577-2
Cite this article as:
Hui Tong, Yi Li, Gaoqiang Mao, Chaolei Wang, Wanjing Yu, Yong Liu, and Mudan Liu, Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1162-1170. https://doi.org/10.1007/s12613-022-2577-2
引用本文 PDF XML SpringerLink
研究论文

采用包覆和掺杂同步改性策略修复废旧LiFePO4制备高性能正极材料

  • 通讯作者:

    喻万景    E-mail: yuwj2005@163.com

文章亮点

  • (1)系统研究了短流程固相烧结法修复废旧LiFePO4正极材料。
  • (2)提出了补锂过程中碳包覆与镁离子掺杂同步改性的策略。
  • (3)总结了修复再生LiFePO4正极材料电化学性能提升的机理。
  • 随着新能源汽车的日渐普及导致动力电池的需求量和报废量呈现爆发式增长,对废旧电池正极材料进行修复再生利用具有重要的环保和经济意义。通过传统浸出方式回收正极材料中有价金属能够实现正极材料的资源化利用,但存在流程复杂、经济效益低、污染严重等问题;而仅通过补锂的方式修复得到的再生正极材料存在循环稳定性差的缺陷。本研究通过固相烧结法补充废旧LiFePO4中损失的锂离子,并加入葡萄糖促进 Fe3+还原的同时在LiFePO4表面形成碳包覆层。此外,在补锂过程中加入Mg2+实现修复再生和掺杂改性同步进行。结果表明,再生过程中同步掺入Mg2+可以明显提高晶体结构稳定性以及锂离子扩散系数。再生LiFePO4正极材料表现出优异的电化学性能。在1 C倍率下,Mg-RLFP的首次放电容量为131.8 mAh⋅g−1,200圈和400圈容量保持率分别达到98.8%和92.2%;在0.1 C和10 C的倍率下,Mg-RLFP的放电容量分别为142.9·mAh⋅g−1和95.5 mAh⋅g−1。研究结果表明,补锂过程中采用碳包覆与镁离子掺杂同步改性的策略能够有效地修复废旧LiFePO4正极材料。
  • Research Article

    Regeneration of spent LiFePO4 as a high-performance cathode material by a simultaneous coating and doping strategy

    + Author Affiliations
    • With the number of decommissioned electric vehicles increasing annually, a large amount of discarded power battery cathode material is in urgent need of treatment. However, common leaching methods for recovering metal salts are economically inefficient and polluting. Meanwhile, the recycled material obtained by lithium remediation alone has limited performance in cycling stability. Herein, a short method of solid-phase reduction is developed to recover spent LiFePO4 by simultaneously introducing Mg2+ ions for hetero-atom doping. Issues of particle agglomeration, carbon layer breakage, lithium loss, and Fe3+ defects in spent LiFePO4 are also addressed. Results show that Mg2+ addition during regeneration can remarkably enhance the crystal structure stability and improve the Li+ diffusion coefficient. The regenerated LiFePO4 exhibits significantly improved electrochemical performance with a specific discharge capacity of 143.2 mAh·g−1 at 0.2 C, and its capacity retention is extremely increased from 37.9% to 98.5% over 200 cycles at 1 C. Especially, its discharge capacity can reach 95.5 mAh·g−1 at 10 C, which is higher than that of spent LiFePO4 (55.9 mAh·g−1). All these results show that the proposed regeneration strategy of simultaneous carbon coating and Mg2+ doping is suitable for the efficient treatment of spent LiFePO4.
    • loading
    • [1]
      B. He, G.Y. Li, J.J. Li, et al., MoSe2@CNT core–shell nanostructures as grain promoters featuring a direct Li2O2 formation/decomposition catalytic capability in lithium–oxygen batteries, Adv. Energy Mater., 11(2021), No. 18, art. No. 2003263. doi: 10.1002/aenm.202003263
      [2]
      X. Yi, F.Q. Zhang, J. Wang, et al., Facile synthesis of N–C/Si@G nanocomposite as a high-performance anode material for Li-ion batteries, J. Alloys Compd., 872(2021), art. No. 159716. doi: 10.1016/j.jallcom.2021.159716
      [3]
      G.Q. Mao, W.J. Yu, Q.J. Zhou, et al., Improved electrochemical performance of high-nickel cathode material with electronic conductor RuO2 as the protecting layer for lithium-ion batteries, Appl. Surf. Sci., 531(2020), art. No. 147245. doi: 10.1016/j.apsusc.2020.147245
      [4]
      Y. Zhang, Y. Ouyang, L. Liu, et al., Synthesis and characterization of Na0.44MnO2 nanorods/graphene composite as cathode materials for sodium-ion batteries, J. Cent. South Univ., 26(2019), No. 6, p. 1510. doi: 10.1007/s11771-019-4107-6
      [5]
      B. Gangaja, S. Nair, and D. Santhanagopalan, Reuse, recycle, and regeneration of LiFePO4 cathode from spent lithium-ion batteries for rechargeable lithium- and sodium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 13, p. 4711. doi: 10.1021/acssuschemeng.0c08487
      [6]
      X.H. Yue, C.C. Zhang, W.B. Zhang, Y.F. Wang, and F.S. Zhang, Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium, Chem. Eng. J., 426(2021), art. No. 131311. doi: 10.1016/j.cej.2021.131311
      [7]
      Y.X. Zheng, J.L. Ning, W. Liu, P.J. Hu, J.F. Lü, and J. Pang, Reaction behaviors of Pb and Zn sulfates during reduction roasting of Zn leaching residue and flotation of artificial sulfide minerals, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 358. doi: 10.1007/s12613-020-2029-9
      [8]
      Q.K. Jing, J.L. Zhang, Y.B. Liu, W.J. Zhang, Y.Q. Chen, and C.Y. Wang, Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method, ACS Sustainable Chem. Eng., 8(2020), No. 48, p. 17622. doi: 10.1021/acssuschemeng.0c07166
      [9]
      X.L. Xu, G.Z. Li, Z.W. Fu, et al., Hydrogen reduced sodium vanadate nanowire arrays as electrode material of lithium-ion battery, J. Cent. South Univ., 26(2019), No. 6, p. 1540. doi: 10.1007/s11771-019-4110-y
      [10]
      H.J. Bi, H.B. Zhu, L. Zu, et al., Low-temperature thermal pretreatment process for recycling inner core of spent lithium iron phosphate batteries, Waste Manage. Res., 39(2021), No. 1, p. 146. doi: 10.1177/0734242X20957403
      [11]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [12]
      B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
      [13]
      J. Kumar, X. Shen, B. Li, H.Z. Liu, and J.M. Zhao, Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4, Waste Manage., 113(2020), p. 32. doi: 10.1016/j.wasman.2020.05.046
      [14]
      H.J. Bi, H.B. Zhu, J.L. Zhan, L. Zu, Y.X. Bai, and H.B. Li, Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries, Waste Manage. Res., 39(2021), No. 9, p. 1164. doi: 10.1177/0734242X20982060
      [15]
      K. He, Z.Y. Zhang, and F.S. Zhang, Selectively peeling of spent LiFePO4 cathode by destruction of crystal structure and binder matrix for efficient recycling of spent battery materials, J. Hazard. Mater., 386(2020), art. No. 121633. doi: 10.1016/j.jhazmat.2019.121633
      [16]
      W.B. Lou, Y. Zhang, Y. Zhang, et al., Leaching performance of Al-bearing spent LiFePO4 cathode powder in H2SO4 aqueous solution, Trans. Nonferrous Met. Soc. China, 31(2021), No. 3, p. 817. doi: 10.1016/S1003-6326(21)65541-3
      [17]
      Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
      [18]
      Y. Dai, Z.D. Xu, D. Hua, H.N. Gu, and N. Wang, Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: An acid-free, efficient, and selective process, J. Hazard. Mater., 396(2020), art. No. 122707. doi: 10.1016/j.jhazmat.2020.122707
      [19]
      Y.F. Song, B.Y. Xie, S.L. Song, et al., Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis, Green Chem., 23(2021), No. 11, p. 3963. doi: 10.1039/D1GC00483B
      [20]
      T. Wang, X.S. Yu, M. Fan, et al., Direct regeneration of spent LiFePO4 via a graphite prelithiation strategy, Chem. Commun., 56(2019), No. 2, p. 245. doi: 10.1039/C9CC08155K
      [21]
      H.J. Bi, H.B. Zhu, L. Zu, Y. Gao, S. Gao, and Y.X. Bai, Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries, Waste Manage. Res., 38(2020), No. 8, p. 911. doi: 10.1177/0734242X20931933
      [22]
      Z. Li, L.H. He, Y.F. Zhu, and C. Yang, A green and cost-effective method for production of LiOH from spent LiFePO4, ACS Sustainable Chem. Eng., 8(2020), No. 42, p. 15915. doi: 10.1021/acssuschemeng.0c04960
      [23]
      X.L. Li, J. Zhang, D.W. Song, J.S. Song, and L.Q. Zhang, Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries, J. Power Sources, 345(2017), p. 78. doi: 10.1016/j.jpowsour.2017.01.118
      [24]
      Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K.H. Lam, and X.H. Hou, Recycling and crystal regeneration of commercial used LiFePO4 cathode materials, Electrochim. Acta, 330(2020), art. No. 135323. doi: 10.1016/j.electacta.2019.135323
      [25]
      Q.F. Sun, X.L. Li, H.Z. Zhang, et al., Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route, J. Alloys Compd., 818(2020), art. No. 153292. doi: 10.1016/j.jallcom.2019.153292
      [26]
      H. Choi, J.Y. Seo, and C.S. Kim, Effect of Mg shallow doping on structural and magnetic properties of LiFePO4 triphylite, IEEE Trans. Magn., 57(2021), No. 2, art. No. 2200305. doi: 10.1109/TMAG.2020.3014728
      [27]
      D. Goonetilleke, T. Faulkner, V.K. Peterson, and N. Sharma, Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries, J. Power Sources, 394(2018), p. 1. doi: 10.1016/j.jpowsour.2018.05.024
      [28]
      P.P. Xu, Q. Dai, H.P. Gao, et al., Efficient direct recycling of lithium-ion battery cathodes by targeted healing, Joule, 4(2020), No. 12, p. 2609. doi: 10.1016/j.joule.2020.10.008
      [29]
      P.W. Liu, Y.N. Zhang, P. Dong, et al., Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping, J. Alloys Compd., 860(2021), art. No. 157909. doi: 10.1016/j.jallcom.2020.157909
      [30]
      J. Li, Y. Wang, L.H. Wang, B. Liu, and H.M. Zhou, A facile recycling and regeneration process for spent LiFePO4 batteries, J. Mater. Sci. Mater. Electron., 30(2019), No. 15, p. 14580. doi: 10.1007/s10854-019-01830-y
      [31]
      L.H. Wang, J. Li, H.M. Zhou, et al., Regeneration cathode material mixture from spent lithium iron phosphate batteries, J. Mater. Sci. Mater. Electron., 29(2018), No. 11, p. 9283. doi: 10.1007/s10854-018-8958-7
      [32]
      Y.D. Huang, R.T. Yu, G.Q. Mao, et al., Unique FeP@C with polyhedral structure in situ coated with reduced graphene oxide as an anode material for lithium ion batteries, J. Alloys Compd., 841(2020), art. No. 155670. doi: 10.1016/j.jallcom.2020.155670
      [33]
      J.C. Zheng, Y.Y. Yao, G.Q. Mao, et al., Iron–zinc sulfide Fe2Zn3S5/Fe1–xS@C derived from a metal–organic framework as a high performance anode material for lithium-ion batteries, J. Mater. Chem. A, 7(2019), No. 27, p. 16479. doi: 10.1039/C9TA03271A
      [34]
      H. Tong, Q.J. Zhou, B. Zhang, X. Wang, and W.J. Yu, A novel core-shell structured nickel-rich layered cathode material for high-energy lithium-ion batteries, Eng. Sci., 8(2019), p. 25. doi: 10.30919/es8d502
      [35]
      J.C. Zheng, Z. Yang, Z.J. He, H. Tong, W.J. Yu, and J.F. Zhang, In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries, Nano Energy, 53(2018), p. 613. doi: 10.1016/j.nanoen.2018.09.014

    Catalog


    • /

      返回文章
      返回