留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  609
  • HTML全文浏览量:  145
  • PDF下载量:  37
  • 被引次数: 0
Zhongxian Wu, Dongping Tao, Youjun Tao, Man Jiang,  and Patrick Zhang, A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1038-1047. https://doi.org/10.1007/s12613-022-2580-7
Cite this article as:
Zhongxian Wu, Dongping Tao, Youjun Tao, Man Jiang,  and Patrick Zhang, A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1038-1047. https://doi.org/10.1007/s12613-022-2580-7
引用本文 PDF XML SpringerLink
研究论文

一种用于酸性条件下胶磷矿反浮选脱硅的新型阳离子捕收剂

  • 通讯作者:

    陶东平    E-mail: dptao@qq.com

    陶有俊    E-mail: tyj05160@163.com

文章亮点

  • 1. 新型捕收剂的主要成分均为化工厂副产品,是一种价格低廉的原料
  • 2. 新型捕收剂具有捕收力强、选择性好、适应较宽浮选矿浆pH等优点。
  • 3. 相比其他传统阳离子脱硅药剂,该新型药剂具有消泡速率快的优点
  • 针对目前胶磷矿反浮选脱硅阳离子捕收剂的选择性差、仅适用于弱碱性矿浆条件、消泡难等问题,本研究采用主要成分为十六烷基三甲基溴化铵(CTAB)和邻苯二甲酸二丁酯(DBP)的两种化工厂副产品研发了一种新型、经济、高效的胶磷矿反浮选脱硅阳离子捕收剂。在微浮选试验中,当pH值为6–10,新型捕收剂用量为25 mg·L−1时,石英和氟磷灰石纯矿物之间存在显著的可浮性差异。在pH值为6,新型捕收剂用量为0.4 kg·t−1时,对脱镁磷精矿进行粗选脱硅浮选试验,获得了P2O5品位为29.33wt%、SiO2品位为12.66wt%、P2O5回收率为79.69wt%的胶磷矿精矿指标。利用FTIR、Zeta电位和接触角测量进行机理研究,研究结果表明新型捕收剂对石英的吸附能力高于氟磷灰石,同时DBP的协同效应也增强了石英和氟磷灰石之间疏水性的差异。泡沫稳定性试验结果表明,新型阳离子捕收剂的最大消泡率可达142.8 mL·min−1,其消泡速率远高于其他常见传统阳离子捕收剂。
  • Research Article

    A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions

    + Author Affiliations
    • We analyzed a novel cationic collector using chemical plant byproducts, such as cetyltrimethylammonium bromide (CTAB) and dibutyl phthalate (DBP). Our aim is to establish a highly effective and economical process for the removal of quartz from collophane. A microflotation test with a 25 mg·L−1 collector at pH value of 6–10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite. Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process (using a 0.4 kg·t−1 new collector at pH = 6) results in a collophane concentrate with 29.33wt% P2O5 grade and 12.66wt% SiO2 at a 79.69wt% P2O5 recovery, providing desirable results. Mechanism studies using Fourier transform infrared spectroscopy, zeta potential, and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite. The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite. The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1. This is considerably higher than that of a conventional cationic collector.
    • loading
    • [1]
      Z.Q. Huang, C. Cheng, Z.W. Liu, et al., Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer, J. Clean. Prod., 221(2019), p. 108. doi: 10.1016/j.jclepro.2019.02.251
      [2]
      Food and Agriculture Organization of the United Nation, World Fertilizer Trends and Outlook to 2022, Rome, 2019, p. 2.
      [3]
      B. Geissler, M.C. Mew, O. Weber, and G. Steiner, Efficiency performance of the world’s leading corporations in phosphate rock mining, Resour. Conserv. Recycl., 105(2015), p. 246. doi: 10.1016/j.resconrec.2015.10.008
      [4]
      M. Mohammadkhani, M. Noaparast, S.Z. Shafaei, A. Amini, E. Amini, and H. Abdollahi, Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate, Int. J. Miner. Process., 100(2011), No. 3-4, p. 157. doi: 10.1016/j.minpro.2011.06.001
      [5]
      X. Liu, C.X. Li, H.H. Luo, R.J. Cheng, and F.Y. Liu, Selective reverse flotation of apatite from dolomite in collophanite ore using saponified gutter oil fatty acid as a collector, Int. J. Miner. Process., 165(2017), p. 20. doi: 10.1016/j.minpro.2017.06.004
      [6]
      D.H. Hoang, N. Kupka, U.A. Peuker, and M. Rudolph, Flotation study of fine grained carbonaceous sedimentary apatite ore – Challenges in process mineralogy and impact of hydrodynamics, Miner. Eng., 121(2018), p. 196. doi: 10.1016/j.mineng.2018.03.021
      [7]
      B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
      [8]
      H.Y. Yang, J.F. Xiao, Y. Xia, et al., Origin of the Ediacaran Weng'an and Kaiyang phosphorite deposits in the Nanhua Basin, SW China, J. Asian Earth Sci., 182(2019), art. No. 103931. doi: 10.1016/j.jseaes.2019.103931
      [9]
      A. Abdelkrim, B. Mustapha, and S. Kouachi, Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors, Arab. J. Geosci., 11(2018), No. 19, art. No. 593. doi: 10.1007/s12517-018-3951-2
      [10]
      C.H. Du, Y.Y. Ge, and M. Liu, Study on double reverse flotation of silicon-calcareous (magnesium) phosphate ore from Guizhou, Met. Mine, 2019, No. 1, p. 92.
      [11]
      S.B. Liu, Y.Y. Ge, J. Fang, J. Yu, and Q. Gao, An investigation of froth stability in reverse flotation of collophane, Miner. Eng., 155(2020), art. No. 106446. doi: 10.1016/j.mineng.2020.106446
      [12]
      M.A. Zhou, C. Dai, L.F. Liu, and S.X. Fang, Reconstruction of flotation column in Kunyang phosphate flotation plant, Modern Min., 32(2016), No. 6, p. 75.
      [13]
      W.B. Liu, W.G. Liu, D.Z. Wei, M.Y. Li, Q. Zhao, and S.C. Xu, Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz, Chem. Eng. J., 309(2017), p. 63. doi: 10.1016/j.cej.2016.10.036
      [14]
      P. de Oliveira, H. Mansur, A. Mansur, G. da Silva, and A.E. Clark Peres, Apatite flotation using pataua palm tree oil as collector, J. Mater. Res. Technol., 8(2019), No. 5, p. 4612. doi: 10.1016/j.jmrt.2019.08.005
      [15]
      Y.L. Botero, R. Serna-Guerrero, A. López-Valdivieso, M. Benzaazoua, and L.A. Cisternas, New insights related to the flotation of covellite in porphyry ores, Miner. Eng., 174(2021), art. No. 107242. doi: 10.1016/j.mineng.2021.107242
      [16]
      E. Sadeghinezhad, M.A.Q. Siddiqui, H. Roshan, and K. Regenauer-Lieb, On the interpretation of contact angle for geomaterial wettability: Contact area versus three-phase contact line, J. Pet. Sci. Eng., 195(2020), art. No. 107579. doi: 10.1016/j.petrol.2020.107579
      [17]
      X.B. Li, Q. Zhang, B. Hou, J.J. Ye, S. Mao, and X.H. Li, Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms, Powder Technol., 318(2017), p. 224. doi: 10.1016/j.powtec.2017.06.003
      [18]
      J. Fang, Y.Y. Ge, and J. Yu, Adsorption behavior and mechanism of an ether amine collector on collophane and quartz, Physicochem. Probl. Miner. Process., 55(2019), No. 1, p. 301. doi: 10.5277/PPMP18132
      [19]
      W.B. Liu, W.X. Huang, F. Rao, Z.L. Zhu, Y.M. Zheng, and S.M. Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 446. doi: 10.1007/s12613-021-2321-3
      [20]
      Z.Q. Huang, S.Y. Zhang, H.L. Wang, et al., “Umbrella” structure trisiloxane surfactant: Synthesis and application for reverse flotation of phosphorite ore in phosphate fertilizer production, J. Agric. Food Chem., 68(2020), No. 40, p. 11114. doi: 10.1021/acs.jafc.0c04759
      [21]
      C.Y. Sun and W.Z. Yin, Flotation Principles of Silicate Minerals, Science Press, Beijing, 2001, p. 127.
      [22]
      F.T. Zhao, R.L. Li, L.F. Liu, and L.L. Zhang, Discussion on double-reverse flotation desilication process of carbonate collophanite in Yunnan, Ind. Miner. Process., 48(2019), No. 8, p. 48.
      [23]
      J.Y. Luo, Study on Double Reverse Flotation of Desilication of Micro-fine Phosphate Ore [Dissertation], Guizhou University, Guizhou, 2018, p. 56.
      [24]
      Z.X. Wu and D.P. Tao, Mineralogical analysis of collophane in Yunnan using AMICS and exploration of difficult flotation mechanisms, Chin. J. Eng., 43(2021), No. 4, p. 503.
      [25]
      D.H. Hoang, A. Hassanzadeh, U.A. Peuker, and M. Rudolph, Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation, Powder Technol., 345(2019), p. 223. doi: 10.1016/j.powtec.2019.01.014
      [26]
      F.Y. Ma, D.P. Tao, and Y.J. Tao, Effects of nanobubbles in column flotation of Chinese sub-bituminous coal, Int. J. Coal Prep. Util., 42(2022), No. 4, p. 1126. doi: 10.1080/19392699.2019.1692340
      [27]
      D.P. Tao and A. Sobhy, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technol., 346(2019), p. 385. doi: 10.1016/j.powtec.2019.02.024
      [28]
      F.Y. Ma, P. Zhang, and D.P. Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 727. doi: 10.1007/s12613-022-2450-3
      [29]
      C.W. Li, D.L. Li, X. Li, M. Xu, and H.J. Zhang, Surface nanobubbles on the hydrophobic surface and their implication to flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1493. doi: 10.1007/s12613-021-2279-1
      [30]
      D.P. Tao, Z.X. Wu, and A. Sobhy, Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms, Powder Technol., 379(2021), p. 12. doi: 10.1016/j.powtec.2020.10.040
      [31]
      A. Sobhy, Z.X. Wu, and D.P. Tao, Statistical analysis and optimization of reverse anionic hematite flotation integrated with nanobubbles, Miner. Eng., 163(2021), art. No. 106799. doi: 10.1016/j.mineng.2021.106799
      [32]
      J. Angélica Evangelista de Carvalho, P. Roberto Gomes Brandão, A. Bicalho Henriques, P. Silva de Oliveira, R. Zanoni Lopes Cançado, and G. Rodrigues da Silva, Selective flotation of apatite from micaceous minerals using patauá palm tree oil collector, Miner. Eng., 156(2020), art. No. 106474. doi: 10.1016/j.mineng.2020.106474
      [33]
      Y. Han, S. Han, B. Kim, et al., Flotation separation of quartz from apatite and surface forces in bubble-particle interactions: Role of pH and cationic amine collector contents, J. Ind. Eng. Chem., 70(2019), p. 107. doi: 10.1016/j.jiec.2018.09.036
      [34]
      A. Liu, P.P. Fan, X.X. Qiao, Z.H. Li, H.F. Wang, and M.Q. Fan, Synergistic effect of mixed DDA/surfactants collectors on flotation of quartz, Miner. Eng., 159(2020), art. No. 106605. doi: 10.1016/j.mineng.2020.106605
      [35]
      A. Liu, M.Q. Fan, Z.H. Li, and J.C. Fan, Non-polar oil assisted DDA flotation of quartz I: Interfacial interaction between dodecane oil drop and mineral particle, Int. J. Miner. Process., 168(2017), p. 1. doi: 10.1016/j.minpro.2017.09.004
      [36]
      A. Liu, M.Q. Fan, and P.P. Fan, Interaction mechanism of miscible DDA-Kerosene and fine quartz and its effect on the reverse flotation of magnetic separation concentrate, Miner. Eng., 65(2014), p. 41. doi: 10.1016/j.mineng.2014.05.008
      [37]
      W.H. Sun, W.G. Liu, S.J. Dai, T. Yang, H. Duan, and W.B. Liu, Effect of Tween 80 on flotation separation of magnesite and dolomite using NaOL as the collector, J. Mol. Liq., 315(2020), art. No. 113712. doi: 10.1016/j.molliq.2020.113712
      [38]
      Z.X. Wu, D.P. Tao, P. Zhang, X.J. Jiang, and M. Jiang, Synergistic effect of DBP with CTAB on flotation separation of quartz from collophane, Minerals, 11(2021), No. 11, art. No. 1196. doi: 10.3390/min11111196
      [39]
      W.G. Liu, W.B. Liu, X.Y. Wang, D.Z. Wei, and B.Y. Wang, Utilization of novel surfactant N-dodecyl-isopropanolamine as collector for efficient separation of quartz from hematite, Sep. Purif. Technol., 162(2016), p. 188. doi: 10.1016/j.seppur.2016.02.033
      [40]
      Z.L. Zhu, D.H. Wang, B. Yang, et al., Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions, Miner. Eng., 151(2020), art. No. 106340. doi: 10.1016/j.mineng.2020.106340
      [41]
      Y.H. Wang and J.W. Ren, The flotation of quartz from iron minerals with a combined quaternary ammonium salt, Int. J. Miner. Process., 77(2005), No. 2, p. 116. doi: 10.1016/j.minpro.2005.03.001
      [42]
      B. Ji, W. Sun, and R.L. Wang, Defoaming mechanism in reverse flotation of collophanite using dodecyl amine, Min. Metall. Eng., 38(2018), No. 2, p. 47.
      [43]
      S.Q. Zhou, X.X. Wang, X.N. Bu, et al., Effects of emulsified kerosene nanodroplets on the entrainment of gangue materials and selectivity index in aphanitic graphite flotation, Miner. Eng., 158(2020), art. No. 106592. doi: 10.1016/j.mineng.2020.106592
      [44]
      M.D. Xu, Y.W. Xing, W. Jin, M. Li, Y.J. Cao, and X.H. Gui, Effect of diesel on the froth stability and its antifoam mechanism in fine coal flotation used MIBC as the frother, Powder Technol., 364(2020), p. 183. doi: 10.1016/j.powtec.2019.12.058

    Catalog


    • /

      返回文章
      返回