留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(13)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  912
  • HTML全文浏览量:  282
  • PDF下载量:  62
  • 被引次数: 0
Jiwei Xue, Huazhen Tu, Jin Shi, Yanni An, He Wan,  and Xianzhong Bu, Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1310-1319. https://doi.org/10.1007/s12613-022-2582-5
Cite this article as:
Jiwei Xue, Huazhen Tu, Jin Shi, Yanni An, He Wan,  and Xianzhong Bu, Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1310-1319. https://doi.org/10.1007/s12613-022-2582-5
引用本文 PDF XML SpringerLink
研究论文

酸化水玻璃和羧甲基纤维素作组合抑制剂对滑石浮选的强化抑制机理

  • 通讯作者:

    卜显忠    E-mail: buxianzhong@xauat.edu.cn

文章亮点

  • (1) 采用酸化水玻璃和羧甲基纤维素作组合抑制剂可以实现黄铜矿和滑石的有效分离。
  • (2) 深入探究了组合抑制剂对滑石的强化抑制机理。
  • (3) 添加酸化水玻璃可以明显改善矿浆分散性,进而有利于羧甲基纤维素在滑石表面的吸附。
  • 黄铜矿和滑石天然可浮性相近,因此两种矿物的浮选分离难度较大。同时,在黄铜矿浮选过程中仅添加羧甲基纤维素也难以实现滑石的有效抑制。本研究发现采用酸化水玻璃和羧甲基纤维素作为组合抑制剂可以实现黄铜矿和滑石的有效分离,并深入探究了组合抑制剂对滑石的强化抑制机理。结果表明,添加酸化水玻璃可以强化羧甲基纤维素对滑石的抑制作用,并可以提高黄铜矿和滑石的浮选分离效果。动电位、红外光谱和X射线光电子能谱分析结果表明,羧甲基纤维素主要通过羟基和羧基吸附在滑石表面,并且酸化水玻璃的添加提高了羧甲基纤维素在滑石表面的吸附。除此之外,吸附量测定和表观粘度分析结果表明添加酸化水玻璃可以明显改善矿浆分散性,这进一步降低了矿浆表观粘度,提高了羧甲基纤维素在滑石表面的吸附量,最终强化了黄铜矿浮选过程中组合抑制剂对滑石的抑制作用。
  • Research Article

    Enhanced inhibition of talc flotation using acidified sodium silicate and sodium carboxymethyl cellulose as the combined inhibitor

    + Author Affiliations
    • The flotation separation of chalcopyrite and talc is challenging due to their similar natural floatability characteristics. Besides, it is usually difficult to effectively inhibit talc by adding sodium carboxymethyl cellulose (CMC) alone during chalcopyrite flotation. Here, a combined inhibitor comprising acidified sodium silicate (ASS) and CMC was employed to realize effective flotation separation of chalcopyrite and talc, and the combined inhibition mechanism was further investigated. Microflotation results showed that adding ASS strengthened the inhibitory effect of CMC on talc and improved the separation of chalcopyrite and talc. The zeta potential, Fourier transform infrared, and X-ray photoelectron spectroscopy analysis indicated that CMC was mainly adsorbed on the talc surface via hydroxyl and carboxyl groups. Moreover, the addition of ASS improved the adsorption of carboxyl groups. Furthermore, the adsorption experiments and apparent viscosity measurements revealed that adding ASS dispersed the pulp well, which reduced the apparent viscosity, improved the adsorption amount of CMC on the talc surface, and enhanced the inhibition of talc in chalcopyrite flotation.
    • loading
    • [1]
      B. Feng, J.X. Peng, W.P. Zhang, X.H. Ning, Y.T. Guo, and W.C. Zhang, Use of locust bean gum in flotation separation of chalcopyrite and talc, Miner. Eng., 122(2018), p. 79. doi: 10.1016/j.mineng.2018.03.044
      [2]
      D.W. Yuan, L. Xie, X.W. Shi, et al., Selective flotation separation of molybdenite and talc by humic substances, Miner. Eng., 117(2018), p. 34. doi: 10.1016/j.mineng.2017.12.005
      [3]
      G.E. Morris, D. Fornasiero, and J. Ralston, Polymer depressants at the talc–water interface: Adsorption isotherm, microflotation and electrokinetic studies, Int. J. Miner. Process., 67(2002), No. 1-4, p. 211. doi: 10.1016/S0301-7516(02)00048-0
      [4]
      S. Jin, Q. Shi, Q. Li, L. Ou, and K. Ouyang, Effect of calcium ionic concentrations on the adsorption of carboxymethyl cellulose onto talc surface: Flotation, adsorption and AFM imaging study, Powder Technol., 331(2018), p. 155. doi: 10.1016/j.powtec.2018.03.014
      [5]
      B. Feng, Y. Lu, Q. Feng, M. Zhang, and Y. Gu, Talc-serpentine interactions and implications for talc depression, Miner. Eng., 32(2012), p. 68. doi: 10.1016/j.mineng.2012.03.004
      [6]
      A. Mierczynska-Vasilev and D.A. Beattie, Adsorption of tailored carboxymethyl cellulose polymers on talc and chalcopyrite: Correlation between coverage, wettability, and flotation, Miner. Eng., 23(2010), No. 11-13, p. 985. doi: 10.1016/j.mineng.2010.03.025
      [7]
      A. Leung, J. Wiltshire, A. Blencowe, Q. Fu, D.H. Solomon, and G.G. Qiao, The effect of acrylamide-co-vinylpyrrolidinone copolymer on the depression of talc in mixed nickel mineral flotation, Miner. Eng., 24(2011), No. 5, p. 449. doi: 10.1016/j.mineng.2010.12.010
      [8]
      C.B. Li, G.F. Zhang, L.B. Xun, H.J. Liu, and Q. Shi, Flotation separation of molybdenite from talc using a new inhibitor Artemisia sphaerocephala Krasch gum, Miner. Eng., 174(2021), art. No. 107227. doi: 10.1016/j.mineng.2021.107227
      [9]
      X. Ma and M. Pawlik, The effect of lignosulfonates on the floatability of talc, Int. J. Miner. Process., 83(2007), No. 1-2, p. 19. doi: 10.1016/j.minpro.2007.03.007
      [10]
      P.G. Shortridge, P.J. Harris, D.J. Bradshaw, and L.K. Koopal, The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc, Int. J. Miner. Process., 59(2000), No. 3, p. 215. doi: 10.1016/S0301-7516(99)00077-0
      [11]
      C. Zhang, C. Liu, Q. Feng, and Y. Chen, Utilization of N-carboxymethyl chitosan as selective depressants for serpentine on the flotation of pyrite, Int. J. Miner. Process., 163(2017), p. 45. doi: 10.1016/j.minpro.2017.04.008
      [12]
      D.A. Beattie, L. Huynh, G.B.N. Kaggwa, and J. Ralston, The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals, Miner. Eng., 19(2006), No. 6-8, p. 598. doi: 10.1016/j.mineng.2005.09.011
      [13]
      W.L. Chen, X.H. Fang, S. Zhang, and D.J. Zhuang, Efficient reduction of magnesium and separation of copper and nickel in a low-grade refractory copper nickel sulfide ore, Nonferrous Met. Eng., 4(2014), No. 6, p. 48.
      [14]
      Y. Han, W. Liu, and J. Chen, DFT simulation of the adsorption of sodium silicate species on kaolinite surfaces, Appl. Surf. Sci., 370(2016), p. 403. doi: 10.1016/j.apsusc.2016.02.179
      [15]
      H. Hao, Y. Cao, L. Li, G. Fan, and J. Liu, Dispersion and depression mechanism of sodium silicate on quartz: Combined molecular dynamics simulations and density functional theory calculations, Appl. Surf. Sci., 537(2021), art. No. 147926. doi: 10.1016/j.apsusc.2020.147926
      [16]
      Z. Wei, W. Sun, Q.P. Zhang, and P.F. Cheng, Flotation separation of fine copper sulfide and easy-sliming calcium-magnesium minerals, Nonferrous Met. Eng., 7(2017), No. 4, p. 64.
      [17]
      B. Feng, W.P. Zhang, Y.T. Guo, J.X. Peng, X.H. Ning, and H.H. Wang, Synergistic effect of acidified water glass and locust bean gum in the flotation of a refractory copper sulfide ore, J. Cleaner Prod., 202(2018), p. 1077. doi: 10.1016/j.jclepro.2018.08.214
      [18]
      N. Kupka, P. Kaden, A. Jantschke, E. Schach, and M. Rudolph, Acidified water glass in the selective flotation of scheelite from calcite, part II: Species in solution and related mechanism of the depressant, Physicochem. Probl. Miner. Process., 56(2020), No. 5, p. 798. doi: 10.37190/ppmp/125639
      [19]
      Y. Jia, Y. Zhang, Y.G. Huang, L.L. Chen, M. Wang, and Y.L. Zhang, Synthesis of trimethylacetyl thiobenzamide and its flotation separation performance of galena from sphalerite, Appl. Surf. Sci., 569(2021), art. No. 151055. doi: 10.1016/j.apsusc.2021.151055
      [20]
      X. Xie, B.Q. Li, R.Q. Xie, et al., Al3+ enhanced the depressant of guar gum on the flotation separation of smithsonite from calcite, J. Mol. Liq., 368(2022), art. No. 120759. doi: 10.1016/j.molliq.2022.120759
      [21]
      F. Jiao, Y. Cui, D. Wang, and C. Hu, Research of the replacement of dichromate with depressants mixture in the separation of copper–lead sulfides by flotation, Sep. Purif. Technol., 278(2021), art. No. 119330. doi: 10.1016/j.seppur.2021.119330
      [22]
      M.S. Kim, S.J. Park, B.K. Gu, and C.H. Kim, Ionically crosslinked alginate-carboxymethyl cellulose beads for the delivery of protein therapeutics, Appl. Surf. Sci., 262(2012), p. 28. doi: 10.1016/j.apsusc.2012.01.010
      [23]
      J.J. Li, W. Zheng, W.B. Zeng, D.Q. Zhang, and X.H. Peng, Structure, properties and application of a novel low-glossed waterborne polyurethane, Appl. Surf. Sci., 307(2014), p. 255. doi: 10.1016/j.apsusc.2014.04.022
      [24]
      W.Q. Li, Y.B. Li, Q. Xiao, Z.L. Wei, and S.X. Song, The influencing mechanisms of sodium hexametaphosphate on chalcopyrite flotation in the presence of MgCl2 and CaCl2, Minerals, 8(2018), No. 4, p. 150. doi: 10.3390/min8040150
      [25]
      S.Z. Jin, P.Y. Zhang, and L.M. Ou, Study on the depression mechanism of zinc sulfate on talc in chalcopyrite flotation, Colloids Surf. A, 619(2021), art. No. 126474. doi: 10.1016/j.colsurfa.2021.126474
      [26]
      Y.M. Chen, S.X. Hu, J.G. Li, L. Weng, C.N. Wu, and K. Liu, Improvement on combustible matter recovery in coal slime flotation with the addition of sodium silicate, Colloids Surf. A, 603(2020), art. No. 125220. doi: 10.1016/j.colsurfa.2020.125220
      [27]
      L. Yang and T. Wang, Preparation of cellulosic drug-loaded hydrogel beads through electrostatic and host-guest interactions, J. Appl. Polym. Sci., 135(2018), No. 31, art. No. 46593. doi: 10.1002/app.46593
      [28]
      O. Bicak, Z. Ekmekci, D.J. Bradshaw, and P.J. Harris, Adsorption of guar gum and CMC on pyrite, Miner. Eng., 20(2007), No. 10, p. 996. doi: 10.1016/j.mineng.2007.03.002
      [29]
      C.B. Li , Q. Shi, G.F. Zhang, H.J. Liu, and H.G. Feng, Effect of aluminum ions on the adsorption of carboxymethyl cellulose onto talc, Miner. Eng., 170(2021), art. No. 107018. doi: 10.1016/j.mineng.2021.107018
      [30]
      H. Zhou, Z.J. Zhang, L.M. Ou, and Q.Y. Mai, Flotation separation of chalcopyrite from talc using a new depressant carrageenan, Colloids Surf. A, 603(2020), art. No. 125274. doi: 10.1016/j.colsurfa.2020.125274
      [31]
      C.F. Huang, L.B. Yu, S.H. He, et al., Influence of molecular structure of carboxymethyl cellulose on high performance silicon anode in lithium-ion batteries, Int. J. Electrochem. Sci., 14(2019), No. 5, p. 4799. doi: 10.20964/2019.05.41
      [32]
      W.Q. Wang, H.B. Wang, Q. Wu, et al., Comparative study on adsorption and depressant effects of carboxymethyl cellulose and sodium silicate in flotation, J. Mol. Liq., 268(2018), p. 140. doi: 10.1016/j.molliq.2018.07.048
      [33]
      M. Khraisheh, C. Holland, C. Creany, P. Harris, and L. Parolis, Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths, Int. J. Miner. Process., 75(2005), No. 3-4, p. 197. doi: 10.1016/j.minpro.2004.08.012
      [34]
      Z. Wei, Y.H. Hu, H.S. Han, et al., Selective separation of scheelite from calcite by self-assembly of H2SiO3 polymer using Al3+ in Pb-BHA flotation, Minerals, 9(2019), No. 1, art. No. 43. doi: 10.3390/min9010043
      [35]
      S. Ning, G.L. Li, P.L. Shen, et al., Selective separation of chalcopyrite and talc using pullulan as a new depressant, Colloids Surf. A, 623(2021), art. No. 126764. doi: 10.1016/j.colsurfa.2021.126764
      [36]
      Y. Cui, F. Jiao, W. Qin, C. Wang, and X. Li, Flotation separation of sphalerite from galena using eco-friendly and efficient depressant pullulan, Sep. Purif. Technol., 295(2022), art. No. 121013. doi: 10.1016/j.seppur.2022.121013
      [37]
      Y.G. Li, W. Zhou, H.L. Wang, et al., An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes, Nat. Nanotechnol., 7(2012), No. 6, p. 394. doi: 10.1038/nnano.2012.72
      [38]
      W. Guo, B. Feng, J.X. Peng, W.P. Zhang, and X.W. Zhu, Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc, J. Mater. Res. Technol., 8(2019), No. 1, p. 697. doi: 10.1016/j.jmrt.2018.05.015
      [39]
      D.Z. Liu, G.F. Zhang, G.H. Huang, Y.W. Gao, and M.T. Wang, Investigations on the selective flotation of chalcopyrite from talc using gum Arabic as depressant, Sep. Sci. Technol., 55(2020), No. 18, p. 3438. doi: 10.1080/01496395.2019.1677716
      [40]
      L.T. Cuba-Chiem, L. Huynh, J. Ralston, and D.A. Beattie, In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: Binding mechanism, pH effects, and adsorption kinetics, Langmuir, 24(2008), No. 15, p. 8036. doi: 10.1021/la800490t
      [41]
      H. Du and J.D. Miller, A molecular dynamics simulation study of water structure and adsorption states at talc surfaces, Int. J. Miner. Process., 84(2007), No. 1-4, p. 172. doi: 10.1016/j.minpro.2006.09.008

    Catalog


    • /

      返回文章
      返回