留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1180
  • HTML全文浏览量:  311
  • PDF下载量:  100
  • 被引次数: 0
Qian Zhou, Tiantian Shi, Bei Xue, Shengyue Gu, Wei Ren, Fang Ye, Xiaomeng Fan, Wenyan Duan, Zihan Zhang, and Lifei Du, Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1198-1206. https://doi.org/10.1007/s12613-022-2583-4
Cite this article as:
Qian Zhou, Tiantian Shi, Bei Xue, Shengyue Gu, Wei Ren, Fang Ye, Xiaomeng Fan, Wenyan Duan, Zihan Zhang, and Lifei Du, Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1198-1206. https://doi.org/10.1007/s12613-022-2583-4
引用本文 PDF XML SpringerLink
研究论文

梯度羰基铁/碳纤维增强复合超材料的多尺度结构及超宽频电磁波吸收性能

  • 通讯作者:

    周倩    E-mail: zhouqian@xupt.edu.cn

    杜立飞    E-mail: dulifei@xust.edu.cn

文章亮点

  • (1) 将梯度结构与周期型台阶结构想结合,设计并制备了一种新型吸波超材料。
  • (2) 梯度台阶吸波超材料在2.0–40 GHz范围内(S、C、X、Ku、K、Ka全波段)实现了大于90%的电磁波吸收。
  • (3) 多尺度结构引起的多种电磁波吸收机制的协同作用实现了电磁波强吸收和超宽频吸波。
  • 先进电磁波吸收材料对薄厚度、轻重量、宽频带、强吸收等综合性能提出了更高要求。在此,我们提出了一种具有梯度电磁特性的新型层状台阶吸波超材料。通过在环氧树脂中分散不同含量的羰基铁和碳纤维来获得不同复介电常数和复磁导率的材料。通过对各层材料的电磁参数和几何尺寸实现宽频吸波性能的优化。在相同厚度和相同各层材料电磁参数条件下,平板层状结构在2.0–40 GHz范围内只能实现小于−6 dB的反射损耗,而本文设计的层状台阶超材料实现了小于−10 dB的电磁波吸收。此外,层状台阶超材料在11.2–21.4 GHz和28.5–40 GHz的频率范围反射损耗小于−15 dB。根据实验和仿真结果,本文讨论了多尺度结构协同效应所引起的多种电磁波吸收机制。因此,将多层结构和周期性台阶结构结结合获得新型的梯度吸收超材料,可为宽频电磁吸波材料的设计和研制提供新的思路。
  • Research Article

    Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design

    + Author Affiliations
    • The demand of high-end electromagnetic wave absorbing materials puts forward higher requirements on comprehensive performances of small thickness, lightweight, broadband, and strong absorption. Herein, a novel multi-layer stepped metamaterial absorber with gradient electromagnetic properties is proposed. The complex permittivity and permeability of each layer are tailored via the proportion of carbonyl-iron and carbon-fiber dispersing into the epoxy resin. The proposed metamaterial is further optimized via adjusting the electromagnetic parameters and geometric sizes of each layer. Comparing with the four-layer composite with gradient electromagnetic properties which could only realize reflection loss (RL) of less than −6 dB in 2.0–40 GHz, the optimized stepped metamaterial with the same thickness and electromagnetic properties realizes less than −10 dB in the relevant frequency range. Additionally, the RL of less than −15 dB is achieved in the frequency range of 11.2–21.4 GHz and 28.5–40 GHz. The multiple electromagnetic wave absorption mechanism is discussed based on the experimental and simulation results, which is believed to be attributed to the synergy effect induced by multi-scale structures of the metamaterial. Therefore, combining multi-layer structures and periodic stepped structures into a novel gradient absorbing metamaterial would give new insights into designing microwave absorption devices for broadband electromagnetic protections.
    • loading
    • Supplementary Information-s12613-022-2583-4.docx
    • [1]
      Z. Zhang, H.S. Lei, H.Y. Yang, et al., Novel multifunctional lattice composite structures with superior load-bearing capacities and radar absorption characteristics, Compos. Sci. Technol., 216(2021), art. No. 109064. doi: 10.1016/j.compscitech.2021.109064
      [2]
      J. Liang, F. Ye, Y.C. Cao, R. Mo, L.F. Cheng, and Q. Song, Defect-engineered graphene/Si3N4 multilayer alternating core–shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 22, art. No. 2200141. doi: 10.1002/adfm.202200141
      [3]
      M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. 2201118. doi: 10.1002/advs.202201118
      [4]
      Q.F. Fan, Y.X. Huang, M.J. Chen, Y. Li, W.L. Song, and D.N. Fang, Integrated design of component and configuration for a flexible and ultrabroadband radar absorbing composite, Compos. Sci. Technol., 176(2019), p. 81. doi: 10.1016/j.compscitech.2019.04.008
      [5]
      T.J. Cui, Microwave metamaterials, Natl. Sci. Rev., 5(2018), No. 2, p. 134. doi: 10.1093/nsr/nwx133
      [6]
      X.W. Yin, L.F. Cheng, L.T. Zhang, N. Travitzky, and P. Greil, Fibre-reinforced multifunctional SiC matrix composite materials, Int. Mater. Rev., 62(2017), No. 3, p. 117. doi: 10.1080/09506608.2016.1213939
      [7]
      X. Li, X.K. Lu, M.H. Li, et al., A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature, J. Mater. Sci. Technol., 125(2022), p. 29. doi: 10.1016/j.jmst.2022.02.032
      [8]
      P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804. doi: 10.1007/s12613-017-1464-8
      [9]
      Q. Zhou, X.W. Yin, F. Ye, et al., Multiscale designed SiCf/Si3N4 composite for low and high frequency cooperative electromagnetic absorption, J. Am. Ceram. Soc., 101(2018), No. 12, p. 5552. doi: 10.1111/jace.15816
      [10]
      W.Y. Duan, X.W. Yin, Q. Li, X.M. Liu, L.F. Cheng, and L.T. Zhang, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic, J. Eur. Ceram. Soc., 34(2014), No. 2, p. 257. doi: 10.1016/j.jeurceramsoc.2013.08.029
      [11]
      M. Yu, P.G. Yang, J. Fu, and S.Z. Liu, Flower-like carbonyl iron powder modified by nanoflakes: Preparation and microwave absorption properties, Appl. Phys. Lett., 106(2015), No. 16, art. No. 161904. doi: 10.1063/1.4919064
      [12]
      Y.P. Duan, G.L. Wu, S.C. Gu, S.Q. Li, and G.J. Ma, Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet, Appl. Surf. Sci., 258(2012), No. 15, p. 5746. doi: 10.1016/j.apsusc.2012.02.082
      [13]
      H. Li, Z.M. Cao, J.Y. Lin, et al., Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance, Nanoscale, 10(2018), No. 4, p. 1930. doi: 10.1039/C7NR06956A
      [14]
      P.F. Yin, G.L. Wu, Y.T. Tang, et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe,Ni) for broadband microwave absorption, Chem. Eng. J., 446(2022), art. No. 136975. doi: 10.1016/j.cej.2022.136975
      [15]
      Y.Q. Pang, Y.F. Li, J.F. Wang, et al., Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction, Compos. Sci. Technol., 158(2018), p. 19. doi: 10.1016/j.compscitech.2018.02.001
      [16]
      I.M.D. Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, and A. Tamburrano, Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Compos. Sci. Technol., 70(2010), No. 1, p. 102. doi: 10.1016/j.compscitech.2009.09.011
      [17]
      Y. Luo, D. Estevez, F. Scarpa, et al., Microwave properties of metacomposites containing carbon fibres and ferromagnetic microwires, Research, 2019(2019), art. No. 3239879.
      [18]
      L. Kong, S.H. Luo, G.Q. Zhang, et al., Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material, Carbon, 193(2022), p. 216. doi: 10.1016/j.carbon.2022.03.016
      [19]
      X.X. Bai, X.J. Hu, S.Y. Zhou, L.F. Li, and M. Rohwerder, Controllable synthesis of leaflet-like poly (3,4-ethylenedioxythiophene)/single-walled carbon nanotube composites with microwave absorbing property, Compos. Sci. Technol., 110(2015), p. 166. doi: 10.1016/j.compscitech.2015.02.010
      [20]
      F. Ye, Q. Song, Z.C. Zhang, et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1707205. doi: 10.1002/adfm.201707205
      [21]
      C.Q. Song, X.W. Yin, M.K. Han, et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties, Carbon, 116(2017), p. 50. doi: 10.1016/j.carbon.2017.01.077
      [22]
      L.Z. Wu, R.W. Shu, J.B. Zhang, and X.T. Chen, Synthesis of three-dimensional porous netlike nitrogen-doped reduced graphene oxide/cerium oxide composite aerogels towards high-efficiency microwave absorption, J. Colloid Interface Sci., 608(2022), p. 1212. doi: 10.1016/j.jcis.2021.10.112
      [23]
      X.P. Li, Z.M. Deng, Y. Li, et al., Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption, Carbon, 147(2019), p. 172. doi: 10.1016/j.carbon.2019.02.073
      [24]
      Q. Zhou, X.W. Yin, H.L. Xu, et al., Design and fabrication of silicon carbides reinforced composite with excellent radar absorption property in X and Ku band, J. Phys. D: Appl. Phys., 52(2019), No. 43, art. No. 435102. doi: 10.1088/1361-6463/ab35fe
      [25]
      Y.X. Huang, W.L. Song, C.X. Wang, et al., Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption, Compos. Sci. Technol., 162(2018), p. 206. doi: 10.1016/j.compscitech.2018.04.028
      [26]
      W.L. Song, Z.L. Zhou, L.C. Wang, et al., Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells, ACS Appl. Mater. Interfaces, 9(2017), No. 49, p. 43179. doi: 10.1021/acsami.7b15367
      [27]
      D. Micheli, R. Pastore, A. Delfini, et al., Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications, Acta Astronaut., 134(2017), p. 33. doi: 10.1016/j.actaastro.2017.01.044
      [28]
      Y. Liu, X.X. Liu, and X.J. Wang, Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites, J. Alloys Compd., 584(2014), p. 249. doi: 10.1016/j.jallcom.2013.09.049
      [29]
      X.Y. Gao, J. Li, Y. Gao, S.Y. Guo, H. Wu, and R. Chen, Microwave absorbing properties of alternating multilayer composites consisting of poly (vinyl chloride) and multi-walled carbon nanotube filled poly (vinyl chloride) layers, Compos. Sci. Technol., 130(2016), p. 10. doi: 10.1016/j.compscitech.2016.03.004
      [30]
      M.X. Chen, Y. Zhu, Y.B. Pan, H.M. Kou, H. Xu, and J.K. Guo, Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties, Mater. Des., 32(2011), No. 5, p. 3013. doi: 10.1016/j.matdes.2010.12.043
      [31]
      A. Shah, A. Ding, Y.H. Wang, et al., Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites, Carbon, 96(2016), p. 987. doi: 10.1016/j.carbon.2015.10.047
      [32]
      Y. Gao, X.Y. Gao, J. Li, and S.Y. Guo, Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites, J. Appl. Polym. Sci., 135(2018), No. 12, art. No. 45846. doi: 10.1002/app.45846
      [33]
      J.P. Gogoi and N.S. Bhattacharyya, Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications, J. Appl. Phys., 116(2014), No. 20, art. No. 204101. doi: 10.1063/1.4902860
      [34]
      Q.F. Fan, X.Z. Yang, H.S. Lei, Y.Y. Liu, Y.X. Huang, and M.J. Chen, Gradient nanocomposite with metastructure design for broadband radar absorption, Composites Part A, 129(2020), art. No. 105698. doi: 10.1016/j.compositesa.2019.105698
      [35]
      Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L.F. Cheng, and L.T. Zhang, A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption, Mater. Des., 123(2017), p. 46. doi: 10.1016/j.matdes.2017.03.044
      [36]
      P.T. Xie, Z.D. Zhang, Z.Y. Wang, K. Sun, and R.H. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures, Research, 2019(2019), art. No. 1021368.
      [37]
      H.Q. Liu, Y.B. Zhang, X.M. Liu, et al., Additive manufacturing of nanocellulose/polyborosilazane derived CNFs–SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption, Chem. Eng. J., 433(2022), art. No. 133743. doi: 10.1016/j.cej.2021.133743
      [38]
      Q.Q. Huang, G.H. Wang, M. Zhou, J. Zheng, S.L. Tang, and G.B. Ji, Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture, J. Mater. Sci. Technol., 108(2022), p. 90. doi: 10.1016/j.jmst.2021.07.055
      [39]
      F.K. Zhou, R.Y. Tan, W. Fang, et al., An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands, Results Phys., 30(2021), art. No. 104811. doi: 10.1016/j.rinp.2021.104811
      [40]
      Q. Zhou, B. Xue, S.Y. Gu, F. Ye, X.M. Fan, and W.Y. Duan, Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials, Results Phys., 38(2022), art. No. 105587. doi: 10.1016/j.rinp.2022.105587
      [41]
      Y.Q. Zhang, H.X. Dong, N.L. Mou, H.N. Li, X. Yao, and L. Zhang, Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications, Nanoscale, 13(2021), No. 16, p. 7831. doi: 10.1039/D0NR08640A
      [42]
      Y.X. Li, Y.G. Duan, and X.Q. Kang, Multi-scale integrated design and fabrication of ultrathin broadband microwave absorption utilizing carbon fiber/Prussian blue/Fe3O4-based lossy lattice metamaterial, J. Mater. Chem. C, 9(2021), No. 19, p. 6316. doi: 10.1039/D1TC00511A
      [43]
      X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, and W.L. Yin, Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials, Adv. Funct. Mater., 32(2022), No. 5, art. No. 2107508. doi: 10.1002/adfm.202107508
      [44]
      S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, and K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies, IEEE Trans. Magn., 27(1991), No. 6, p. 5462. doi: 10.1109/20.278872
      [45]
      W. Li, T.L. Wu, W. Wang, P.C. Zhai, and J.G. Guan, Broadband patterned magnetic microwave absorber, J. Appl. Phys., 116(2014), No. 4, art. No. 044110. doi: 10.1063/1.4891475
      [46]
      Y.X. Huang, X.J. Yuan, M.J. Chen, et al., Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization, ACS Appl. Mater. Interfaces, 10(2018), No. 51, p. 44731. doi: 10.1021/acsami.8b16938
      [47]
      D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, 71(2005), No. 3, art. No. 036617. doi: 10.1103/PhysRevE.71.036617
      [48]
      P.Y. Liu, L.M. Wang, B. Cao, et al., Designing high-performance electromagnetic wave absorption materials based on polymeric graphene-based dielectric composites: From fabrication technology to periodic pattern design, J. Mater. Chem. C, 5(2017), No. 27, p. 6745. doi: 10.1039/C7TC02202F
      [49]
      K.L. Zhang, J.Y. Zhang, Z.L. Hou, S. Bi, and Q.L. Zhao, Multifunctional broadband microwave absorption of flexible graphene composites, Carbon, 141(2019), p. 608. doi: 10.1016/j.carbon.2018.10.024
      [50]
      Z.C. Lou, X. Han, J. Liu, et al., Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions, Composites Part B, 226(2021), art. No. 109335. doi: 10.1016/j.compositesb.2021.109335

    Catalog


    • /

      返回文章
      返回