Cite this article as: |
Qian Zhou, Tiantian Shi, Bei Xue, Shengyue Gu, Wei Ren, Fang Ye, Xiaomeng Fan, Wenyan Duan, Zihan Zhang, and Lifei Du, Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1198-1206. https://doi.org/10.1007/s12613-022-2583-4 |
周倩 E-mail: zhouqian@xupt.edu.cn
杜立飞 E-mail: dulifei@xust.edu.cn
Supplementary Information-s12613-022-2583-4.docx |
[1] |
Z. Zhang, H.S. Lei, H.Y. Yang, et al., Novel multifunctional lattice composite structures with superior load-bearing capacities and radar absorption characteristics, Compos. Sci. Technol., 216(2021), art. No. 109064. doi: 10.1016/j.compscitech.2021.109064
|
[2] |
J. Liang, F. Ye, Y.C. Cao, R. Mo, L.F. Cheng, and Q. Song, Defect-engineered graphene/Si3N4 multilayer alternating core–shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption, Adv. Funct. Mater., 32(2022), No. 22, art. No. 2200141. doi: 10.1002/adfm.202200141
|
[3] |
M.H. Li, W.J. Zhu, X. Li, et al., Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption, Adv. Sci., 9(2022), No. 16, art. No. 2201118. doi: 10.1002/advs.202201118
|
[4] |
Q.F. Fan, Y.X. Huang, M.J. Chen, Y. Li, W.L. Song, and D.N. Fang, Integrated design of component and configuration for a flexible and ultrabroadband radar absorbing composite, Compos. Sci. Technol., 176(2019), p. 81. doi: 10.1016/j.compscitech.2019.04.008
|
[5] |
T.J. Cui, Microwave metamaterials, Natl. Sci. Rev., 5(2018), No. 2, p. 134. doi: 10.1093/nsr/nwx133
|
[6] |
X.W. Yin, L.F. Cheng, L.T. Zhang, N. Travitzky, and P. Greil, Fibre-reinforced multifunctional SiC matrix composite materials, Int. Mater. Rev., 62(2017), No. 3, p. 117. doi: 10.1080/09506608.2016.1213939
|
[7] |
X. Li, X.K. Lu, M.H. Li, et al., A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature, J. Mater. Sci. Technol., 125(2022), p. 29. doi: 10.1016/j.jmst.2022.02.032
|
[8] |
P. Zhou, J.H. Chen, M. Liu, P. Jiang, B. Li, and X.M. Hou, Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2–18 GHz range, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 804. doi: 10.1007/s12613-017-1464-8
|
[9] |
Q. Zhou, X.W. Yin, F. Ye, et al., Multiscale designed SiCf/Si3N4 composite for low and high frequency cooperative electromagnetic absorption, J. Am. Ceram. Soc., 101(2018), No. 12, p. 5552. doi: 10.1111/jace.15816
|
[10] |
W.Y. Duan, X.W. Yin, Q. Li, X.M. Liu, L.F. Cheng, and L.T. Zhang, Synthesis and microwave absorption properties of SiC nanowires reinforced SiOC ceramic, J. Eur. Ceram. Soc., 34(2014), No. 2, p. 257. doi: 10.1016/j.jeurceramsoc.2013.08.029
|
[11] |
M. Yu, P.G. Yang, J. Fu, and S.Z. Liu, Flower-like carbonyl iron powder modified by nanoflakes: Preparation and microwave absorption properties, Appl. Phys. Lett., 106(2015), No. 16, art. No. 161904. doi: 10.1063/1.4919064
|
[12] |
Y.P. Duan, G.L. Wu, S.C. Gu, S.Q. Li, and G.J. Ma, Study on microwave absorbing properties of carbonyl-iron composite coating based on PVC and Al sheet, Appl. Surf. Sci., 258(2012), No. 15, p. 5746. doi: 10.1016/j.apsusc.2012.02.082
|
[13] |
H. Li, Z.M. Cao, J.Y. Lin, et al., Synthesis of u-channelled spherical Fex(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance, Nanoscale, 10(2018), No. 4, p. 1930. doi: 10.1039/C7NR06956A
|
[14] |
P.F. Yin, G.L. Wu, Y.T. Tang, et al., Structure regulation in N-doping biconical carbon frame decorated with CoFe2O4 and (Fe,Ni) for broadband microwave absorption, Chem. Eng. J., 446(2022), art. No. 136975. doi: 10.1016/j.cej.2022.136975
|
[15] |
Y.Q. Pang, Y.F. Li, J.F. Wang, et al., Carbon fiber assisted glass fabric composite materials for broadband radar cross section reduction, Compos. Sci. Technol., 158(2018), p. 19. doi: 10.1016/j.compscitech.2018.02.001
|
[16] |
I.M.D. Rosa, A. Dinescu, F. Sarasini, M.S. Sarto, and A. Tamburrano, Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers, Compos. Sci. Technol., 70(2010), No. 1, p. 102. doi: 10.1016/j.compscitech.2009.09.011
|
[17] |
Y. Luo, D. Estevez, F. Scarpa, et al., Microwave properties of metacomposites containing carbon fibres and ferromagnetic microwires, Research, 2019(2019), art. No. 3239879.
|
[18] |
L. Kong, S.H. Luo, G.Q. Zhang, et al., Interfacial polarization dominant CNTs/PyC hollow microspheres as a lightweight electromagnetic wave absorbing material, Carbon, 193(2022), p. 216. doi: 10.1016/j.carbon.2022.03.016
|
[19] |
X.X. Bai, X.J. Hu, S.Y. Zhou, L.F. Li, and M. Rohwerder, Controllable synthesis of leaflet-like poly (3,4-ethylenedioxythiophene)/single-walled carbon nanotube composites with microwave absorbing property, Compos. Sci. Technol., 110(2015), p. 166. doi: 10.1016/j.compscitech.2015.02.010
|
[20] |
F. Ye, Q. Song, Z.C. Zhang, et al., Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption, Adv. Funct. Mater., 28(2018), No. 17, art. No. 1707205. doi: 10.1002/adfm.201707205
|
[21] |
C.Q. Song, X.W. Yin, M.K. Han, et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties, Carbon, 116(2017), p. 50. doi: 10.1016/j.carbon.2017.01.077
|
[22] |
L.Z. Wu, R.W. Shu, J.B. Zhang, and X.T. Chen, Synthesis of three-dimensional porous netlike nitrogen-doped reduced graphene oxide/cerium oxide composite aerogels towards high-efficiency microwave absorption, J. Colloid Interface Sci., 608(2022), p. 1212. doi: 10.1016/j.jcis.2021.10.112
|
[23] |
X.P. Li, Z.M. Deng, Y. Li, et al., Controllable synthesis of hollow microspheres with Fe@carbon dual-shells for broad bandwidth microwave absorption, Carbon, 147(2019), p. 172. doi: 10.1016/j.carbon.2019.02.073
|
[24] |
Q. Zhou, X.W. Yin, H.L. Xu, et al., Design and fabrication of silicon carbides reinforced composite with excellent radar absorption property in X and Ku band, J. Phys. D: Appl. Phys., 52(2019), No. 43, art. No. 435102. doi: 10.1088/1361-6463/ab35fe
|
[25] |
Y.X. Huang, W.L. Song, C.X. Wang, et al., Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption, Compos. Sci. Technol., 162(2018), p. 206. doi: 10.1016/j.compscitech.2018.04.028
|
[26] |
W.L. Song, Z.L. Zhou, L.C. Wang, et al., Constructing repairable meta-structures of ultra-broad-band electromagnetic absorption from three-dimensional printed patterned shells, ACS Appl. Mater. Interfaces, 9(2017), No. 49, p. 43179. doi: 10.1021/acsami.7b15367
|
[27] |
D. Micheli, R. Pastore, A. Delfini, et al., Electromagnetic characterization of advanced nanostructured materials and multilayer design optimization for metrological and low radar observability applications, Acta Astronaut., 134(2017), p. 33. doi: 10.1016/j.actaastro.2017.01.044
|
[28] |
Y. Liu, X.X. Liu, and X.J. Wang, Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites, J. Alloys Compd., 584(2014), p. 249. doi: 10.1016/j.jallcom.2013.09.049
|
[29] |
X.Y. Gao, J. Li, Y. Gao, S.Y. Guo, H. Wu, and R. Chen, Microwave absorbing properties of alternating multilayer composites consisting of poly (vinyl chloride) and multi-walled carbon nanotube filled poly (vinyl chloride) layers, Compos. Sci. Technol., 130(2016), p. 10. doi: 10.1016/j.compscitech.2016.03.004
|
[30] |
M.X. Chen, Y. Zhu, Y.B. Pan, H.M. Kou, H. Xu, and J.K. Guo, Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties, Mater. Des., 32(2011), No. 5, p. 3013. doi: 10.1016/j.matdes.2010.12.043
|
[31] |
A. Shah, A. Ding, Y.H. Wang, et al., Enhanced microwave absorption by arrayed carbon fibers and gradient dispersion of Fe nanoparticles in epoxy resin composites, Carbon, 96(2016), p. 987. doi: 10.1016/j.carbon.2015.10.047
|
[32] |
Y. Gao, X.Y. Gao, J. Li, and S.Y. Guo, Microwave absorbing and mechanical properties of alternating multilayer carbonyl iron powder-poly(vinyl chloride) composites, J. Appl. Polym. Sci., 135(2018), No. 12, art. No. 45846. doi: 10.1002/app.45846
|
[33] |
J.P. Gogoi and N.S. Bhattacharyya, Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications, J. Appl. Phys., 116(2014), No. 20, art. No. 204101. doi: 10.1063/1.4902860
|
[34] |
Q.F. Fan, X.Z. Yang, H.S. Lei, Y.Y. Liu, Y.X. Huang, and M.J. Chen, Gradient nanocomposite with metastructure design for broadband radar absorption, Composites Part A, 129(2020), art. No. 105698. doi: 10.1016/j.compositesa.2019.105698
|
[35] |
Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L.F. Cheng, and L.T. Zhang, A novel two-layer periodic stepped structure for effective broadband radar electromagnetic absorption, Mater. Des., 123(2017), p. 46. doi: 10.1016/j.matdes.2017.03.044
|
[36] |
P.T. Xie, Z.D. Zhang, Z.Y. Wang, K. Sun, and R.H. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures, Research, 2019(2019), art. No. 1021368.
|
[37] |
H.Q. Liu, Y.B. Zhang, X.M. Liu, et al., Additive manufacturing of nanocellulose/polyborosilazane derived CNFs–SiBCN ceramic metamaterials for ultra-broadband electromagnetic absorption, Chem. Eng. J., 433(2022), art. No. 133743. doi: 10.1016/j.cej.2021.133743
|
[38] |
Q.Q. Huang, G.H. Wang, M. Zhou, J. Zheng, S.L. Tang, and G.B. Ji, Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture, J. Mater. Sci. Technol., 108(2022), p. 90. doi: 10.1016/j.jmst.2021.07.055
|
[39] |
F.K. Zhou, R.Y. Tan, W. Fang, et al., An ultra-broadband microwave absorber based on hybrid structure of stereo metamaterial and planar metasurface for the S, C, X and Ku bands, Results Phys., 30(2021), art. No. 104811. doi: 10.1016/j.rinp.2021.104811
|
[40] |
Q. Zhou, B. Xue, S.Y. Gu, F. Ye, X.M. Fan, and W.Y. Duan, Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials, Results Phys., 38(2022), art. No. 105587. doi: 10.1016/j.rinp.2022.105587
|
[41] |
Y.Q. Zhang, H.X. Dong, N.L. Mou, H.N. Li, X. Yao, and L. Zhang, Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications, Nanoscale, 13(2021), No. 16, p. 7831. doi: 10.1039/D0NR08640A
|
[42] |
Y.X. Li, Y.G. Duan, and X.Q. Kang, Multi-scale integrated design and fabrication of ultrathin broadband microwave absorption utilizing carbon fiber/Prussian blue/Fe3O4-based lossy lattice metamaterial, J. Mater. Chem. C, 9(2021), No. 19, p. 6316. doi: 10.1039/D1TC00511A
|
[43] |
X.X. Sun, Y.B. Li, Y.X. Huang, Y.J. Cheng, S.S. Wang, and W.L. Yin, Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials, Adv. Funct. Mater., 32(2022), No. 5, art. No. 2107508. doi: 10.1002/adfm.202107508
|
[44] |
S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, and K.S. Churn, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies, IEEE Trans. Magn., 27(1991), No. 6, p. 5462. doi: 10.1109/20.278872
|
[45] |
W. Li, T.L. Wu, W. Wang, P.C. Zhai, and J.G. Guan, Broadband patterned magnetic microwave absorber, J. Appl. Phys., 116(2014), No. 4, art. No. 044110. doi: 10.1063/1.4891475
|
[46] |
Y.X. Huang, X.J. Yuan, M.J. Chen, et al., Ultrathin flexible carbon fiber reinforced hierarchical metastructure for broadband microwave absorption with nano lossy composite and multiscale optimization, ACS Appl. Mater. Interfaces, 10(2018), No. 51, p. 44731. doi: 10.1021/acsami.8b16938
|
[47] |
D.R. Smith, D.C. Vier, T. Koschny, and C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, 71(2005), No. 3, art. No. 036617. doi: 10.1103/PhysRevE.71.036617
|
[48] |
P.Y. Liu, L.M. Wang, B. Cao, et al., Designing high-performance electromagnetic wave absorption materials based on polymeric graphene-based dielectric composites: From fabrication technology to periodic pattern design, J. Mater. Chem. C, 5(2017), No. 27, p. 6745. doi: 10.1039/C7TC02202F
|
[49] |
K.L. Zhang, J.Y. Zhang, Z.L. Hou, S. Bi, and Q.L. Zhao, Multifunctional broadband microwave absorption of flexible graphene composites, Carbon, 141(2019), p. 608. doi: 10.1016/j.carbon.2018.10.024
|
[50] |
Z.C. Lou, X. Han, J. Liu, et al., Nano-Fe3O4/bamboo bundles/phenolic resin oriented recombination ternary composite with enhanced multiple functions, Composites Part B, 226(2021), art. No. 109335. doi: 10.1016/j.compositesb.2021.109335
|