留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  608
  • HTML全文浏览量:  209
  • PDF下载量:  55
  • 被引次数: 0
Shuai Zhu, Qiuyue Zhao, Xiaolong Li, Yan Liu, Tianci Li,  and Ting’an Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1067-1077. https://doi.org/10.1007/s12613-022-2585-2
Cite this article as:
Shuai Zhu, Qiuyue Zhao, Xiaolong Li, Yan Liu, Tianci Li,  and Ting’an Zhang, Flow and penetration behavior of submerged side-blown gas, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1067-1077. https://doi.org/10.1007/s12613-022-2585-2
引用本文 PDF XML SpringerLink
研究论文

浸没侧吹气体的流动和穿透行为

  • 通讯作者:

    张廷安    E-mail: zta2000@163.net

文章亮点

  • (1) 采用高速摄像-数字图像处理-统计的方法,系统且定量地研究了浸没侧吹气体的时空分布和穿透深度。
  • (2) 利用时间平均图像,系统阐述了鼓泡和稳定射流机制之间的显著差异。
  • (3) 建立了关于气体穿透深度的新的无量纲关联式。
  • 浸没侧吹技术目前被广泛应用于火法冶金,极大促进了冶金工业的发展。本文旨在进一步了解火法冶金中的气液相互作用机制。本文采用高速摄像-数字图像处理-统计方法,系统研究了气体流量、喷嘴直径和喷嘴倾斜角度对空气-水体系中浸没侧吹气体的时空分布和穿透行为的影响。结果表明,随着气体流量的增加,气体运动将逐渐从鼓泡机制转变为稳定射流机制,并将逐渐形成完整射流结构。当气体流量较低时,在喷嘴上方将形成一个由大气泡构成的气泡区域。当气体流量和喷嘴直径均较大时,在喷嘴上方将形成一个由微小气泡构成的气泡区域。增加喷嘴倾斜角度将导致形成完整射流结构需要更大的气体流量。在采样时间内,无量纲水平和竖直穿透深度呈高斯分布。减小喷嘴直径,增加气体流量或喷嘴倾斜角度,将扩大气体的分布范围和采样时间内气体穿透深度的离散性。通过量纲分析,获得了误差在±20%以内的关于气体穿透深度的新关联式。由当前研究提出的关联式计算出的120 t转炉中氩气-熔体系统的水平穿透深度与文献中关联式的计算结果和文献中的数值模拟结果非常接近。
  • Research Article

    Flow and penetration behavior of submerged side-blown gas

    + Author Affiliations
    • To assess the widely used submerged side-blowing in pyrometallurgy, a high-speed camera–digital image processing–statistical approach was used to systematically investigate the effects of the gas flow rate, nozzle diameter, and inclination angle on the space–time distribution and penetration behavior of submerged side-blown gas in an air–water system. The results show that the gas motion gradually changes from a bubbling regime to a steady jetting regime and the formation of a complete jet structure as the flow rate increases. When the flow rate is low, a bubble area is formed by large bubbles in the area above the nozzle. When the flow rate and the nozzle diameter are significant, a bubble area is formed by tiny bubbles in the area above the nozzle. The increased inclination angle requires a more significant flow rate to form a complete jet structure. In the sampling time, the dimensionless horizontal and vertical penetration depths are Gaussian distributed. Decreasing the nozzle diameter and increasing the flow rate or inclination angle will increase the distribution range and discreteness. New correlations for a penetration depth with an error of ±20% were obtained through dimensional analysis. The dimensionless horizontal penetration depth of an argon-melt system in a 120 t converter calculated by the correlation proposed by the current study is close to the result calculated by a correlation in the literature and a numerical simulation result in the literature.
    • loading
    • [1]
      H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas-liquid mass transfer and flow phenomena in a Peirce–Smith converter: A numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092. doi: 10.1007/s12613-019-1831-8
      [2]
      L. Zhang, L. Zhang, and Y. He, The process and application of oxygen-enriched air side blown smelting of lead–zinc materials, [in] Proc. 9th International Symposium on Lead and Zinc Processing, San Diego, 2020, p. 291.
      [3]
      H.L. Zhang, C.Q. Zhou, W. Bing, and Y.M. Chen, Numerical simulation of multiphase flow in a Vanyukov furnace, J. S. Afr. Inst. Min. Metall., 115(2015), No. 5, p. 457. doi: 10.17159/2411-9717/2015/v115n5a14
      [4]
      L. Chen, W.D. Bin, T.Z. Yang, W.F. Liu, and S. Bin, Research and industrial application of oxygen-rich side-blow bath smelting technology, [in] Proc. 4th International Symposium on High-Temperature Metallurgical Processing, San Antonio, 2013, p. 49.
      [5]
      L. Chen, W. Chen, H. Xiao, T.Z. Yang, W.F. Liu, and D.C. Zhang, Oxygen-rich side blow bath smelting technology - new developments in China, [in] Proc. 7th International Symposium on High-Temperature Metallurgical Processing, Nashville, 2016, p. 123.
      [6]
      J.H. Wei, Y. He, and G.M. Shi, Mathematical modeling of fluid flow in bath during combined side and top blowing AOD refining process of stainless steel: Mathematical model of the fluid flow, Steel Res. Int., 82(2011), No. 6, p. 703. doi: 10.1002/srin.201000278
      [7]
      K.F. Feng, J.Y. Zhang, B. Wang, et al., Numerical simulation study on immersed side-blowing in C–H2 smelting reduction furnace, [in] Proc. 5th International Symposium on High-Temperature Metallurgical Processing, San Diego, 2014, p. 451.
      [8]
      M. Iguchi, S. Kodani, and H. Tokunaga, Bubble and liquid flow characteristics during horizontal cold gas injection into a water bath, Steel Res. Int., 71(2000), No. 11, p. 435. doi: 10.1002/srin.200005712
      [9]
      X.L. Li, Y. Liu, D.X. Wang, and T.A. Zhang, Emulsification and flow characteristics in copper oxygen-rich side-blown bath smelting process, Metals, 10(2020), No. 11, art. No. 1520. doi: 10.3390/met10111520
      [10]
      R. Cheng, L.J. Zhang, Y.B. Yin, and J.M. Zhang, Effect of side blowing on fluid flow and mixing phenomenon in gas-stirred ladle, Metals, 11(2021), No. 2, art. No. 369. doi: 10.3390/met11020369
      [11]
      E.P. Heikkinen, T.M.J. Fabritius, T.M.T. Kokkonen, and J.J. Härkki, An experimental and computational study on the melting behaviour of AOD and chromium converter slags, Steel Res. Int., 75(2004), No. 12, p. 800. doi: 10.1002/srin.200405845
      [12]
      K.Z. Song and A. Jokilaakso, Transport phenomena in copper bath smelting and converting processes - A review of experimental and modeling studies, Miner. Process. Extr. Metall. Rev., 43(2022), No. 1, p. 107. doi: 10.1080/08827508.2020.1806835
      [13]
      D.K. Chibwe, G. Akdogan, G.A. Bezuidenhout, J. Kapusta, S. Bradshaw, and J.J. Eksteen, Sonic injection into a PGM Peirce-Smith converter: CFD modelling and industrial trials, J. S. Afr. Inst. Min. Metall., 115(2015), No. 5, p. 349. doi: 10.17159/2411-9717/2015/v115n5a2
      [14]
      J.P.T. Kapusta, Submerged gas jet penetration: A study of bubbling versus jetting and side versus bottom blowing in copper bath smelting, JOM, 69(2017), No. 6, p. 970. doi: 10.1007/s11837-017-2336-4
      [15]
      Y.D. Xiao, T.T. Lu, Y.G. Zhou, Q.Q. Su, L.Z. Mu, T. Wei, H.L. Zhao, and F.Q. Liu, Computational fluid dynamics study on enhanced circulation flow in a side-blown copper smelting furnace, JOM, 73(2021), No. 9, p. 2724. doi: 10.1007/s11837-021-04800-0
      [16]
      Y.T. Liu, T.Z. Yang, Z. Chen, Z.Y. Zhu, L. Zhang, and Q. Huang, Experiment and numerical simulation of two-phase flow in oxygen enriched side-blown furnace, Trans. Nonferrous Met. Soc. China, 30(2020), No. 1, p. 249. doi: 10.1016/S1003-6326(19)65196-4
      [17]
      J.L. Svantesson, M. Ersson, and P.G. Jönsson, Effect of Froude number on submerged gas blowing characteristics, Materials (Basel), 14(2021), No. 3, art. No. 627.
      [18]
      E.O. Hoefele and J.K. Brimacombe, Flow regimes in submerged gas injection, Metall. Mater. Trans. B, 10(1979), No. 4, p. 631. doi: 10.1007/BF02662566
      [19]
      K. Bölke, M. Ersson, P.Y. Ni, M. Swartling, and P.G. Jönsson, Physical modeling study on the mixing in the new IronArc process, Steel Res. Int., 89(2018), No. 7, art. No. 1700555. doi: 10.1002/srin.201700555
      [20]
      K. Bölke, M. Ersson, M. Imris, and P.G. Jönsson, Importance of the penetration depth and mixing in the IRONARC process, ISIJ Int., 58(2018), No. 7, p. 1210. doi: 10.2355/isijinternational.ISIJINT-2018-043
      [21]
      G.S. Wei, R. Zhu, T.P. Tang, K. Dong, and X.T. Wu, Study on the impact characteristics of submerged CO2 and O2 mixed injection (S-COMI) in EAF steelmaking, Metall. Mater. Trans. B, 50(2019), No. 2, p. 1077. doi: 10.1007/s11663-018-1482-6
      [22]
      J. Ma, Y.P. Song, P. Zhou, W. Cheng, and S.G. Chu, A mathematical approach to submerged horizontal buoyant jet trajectory and a criterion for jet flow patterns, Exp. Therm. Fluid Sci., 92(2018), p. 409. doi: 10.1016/j.expthermflusci.2017.11.011
      [23]
      K. Harby, S. Chiva, and J.L. Muñoz-Cobo, An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient, Exp. Therm. Fluid Sci., 53(2014), p. 26. doi: 10.1016/j.expthermflusci.2013.10.009
      [24]
      H.H. Shi, Q. Guo, C. Wang, et al., Oscillation flow induced by underwater supersonic gas jets, Shock Waves, 20(2010), No. 4, p. 347. doi: 10.1007/s00193-010-0270-2
      [25]
      H.H. Shi, B.Y. Wang, and Z.Q. Dai, Research on the mechanics of underwater supersonic gas jets, Sci. China Phys. Mech. Astron., 53(2010), No. 3, p. 527. doi: 10.1007/s11433-010-0150-x
      [26]
      W.C. Li, Z.M. Meng, Z.N. Sun, L. Sun, and C. Wang, Investigations on the penetration length of steam–air mixture jets injected horizontally and vertically in quiescent water, Int. J. Heat Mass Transf., 122(2018), p. 89. doi: 10.1016/j.ijheatmasstransfer.2018.01.075
      [27]
      J.H. Wei, J.C. Ma, Y.Y. Fan, N.W. Yu, S.L. Yang, S.H. Xiang, and D.P. Zhu, Water modelling study of fluid flow and mixing characteristics in bath during AOD process, Ironmaking Steelmaking, 26(1999), No. 5, p. 363. doi: 10.1179/030192399677239
      [28]
      J.H. Wei, H.L. Zhu, H.B. Chi, and H.J. Wang, Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Fluid mixing characteristics in bath, ISIJ Int., 50(2010), No. 1, p. 26. doi: 10.2355/isijinternational.50.26
      [29]
      J.H. Wei, H.L. Zhu, H.B. Chi, and H.J. Wang, Physical modeling study on combined side and top blowing AOD refining process of stainless steel: Gas stirring and fluid flow characteristics in bath, ISIJ Int., 50(2010), No. 1, p. 17. doi: 10.2355/isijinternational.50.17
      [30]
      T. Fabritius, P. Kupari, and J. Härkki, Physical modelling of a sidewall-blowing converter, Scand. J. Metall., 30(2001), No. 2, p. 57. doi: 10.1034/j.1600-0692.2001.300201.x
      [31]
      T.M.J. Fabritius, P.T. Mure, and J.J. Härkki, The determination of the minimum and operational gas flow rates for sidewall blowing in the AOD-converter, ISIJ Int., 43(2003), No. 8, p. 1177. doi: 10.2355/isijinternational.43.1177
      [32]
      M. Bjurström, A. Tilliander, M. Iguchi, and P. Jönsson, Physical-modeling study of fluid flow and gas penetration in a side-blown AOD converter, ISIJ Int., 46(2006), No. 4, p. 523. doi: 10.2355/isijinternational.46.523
      [33]
      H.J. Odenthal, U. Thiedemann, U. Falkenreck, and J. Schlueter, Simulation of fluid flow and oscillation of the argon oxygen decarburization (AOD) process, Metall. Mater. Trans. B, 41(2010), No. 2, p. 396. doi: 10.1007/s11663-009-9335-y
      [34]
      T. Hass, V.V. Visuri, A. Kärnä, E. Isohookana, P. Sulasalmi, R.H. Eriç, H. Pfeifer, and T. Fabritius, Physical modelling of the effect of slag and top-blowing on mixing in the AOD process, [in] Proc. 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, 2016, p. 999.
      [35]
      P. Ternstedt, P.Y. Ni, N. Lundqvist, A. Tilliander, and P.G. Jönsson, A physical modelling study to determine the influence of slag on the fluid flow in the AOD converter process, Ironmaking Steelmaking, 45(2018), No. 10, p. 944. doi: 10.1080/03019233.2017.1415012
      [36]
      S. Chanouian, B. Ahlin, A. Tilliander, and M. Ersson, Inclination effect on mixing time in a gas–stirred side–blown converter, Steel Res. Int., 92(2021), No. 10, art. No. 2100044. doi: 10.1002/srin.202100044
      [37]
      Y.G. Xu, M. Ersson, and P.G. Jönsson, Numerical investigations on bubble behavior at a steel–slag interface, Steel Res. Int., 91(2020), No. 6, art. No. 1900611. doi: 10.1002/srin.201900611
      [38]
      P. Dong, B.J. Lu, S.F. Gong, and D. Cheng, Experimental study of submerged gas jets in liquid cross flow, Exp. Therm. Fluid Sci., 112(2020), art. No. 109998. doi: 10.1016/j.expthermflusci.2019.109998
      [39]
      C.J. Su, J.M. Chou, and S.H. Liu, Effect of gas bottom blowing conditions on fluid flow phenomena and mixing time of molten iron inside an ironmaking smelter, Mater. Trans., 51(2010), No. 9, p. 1602. doi: 10.2320/matertrans.M2010104
      [40]
      A.N. Conejo, Fundamentals of Dimensional Analysis: Theory and Applications in Metallurgy, Springer Singapore, Singapore, 2021, p. 305.

    Catalog


    • /

      返回文章
      返回