留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  536
  • HTML全文浏览量:  163
  • PDF下载量:  45
  • 被引次数: 0
Tichen Wang, Guiju Sun, Jiushuai Deng, Hongxiang Xu, Guoyong Wang, Mingzhen Hu, Qizheng Qin,  and Xiaohao Sun, A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1048-1056. https://doi.org/10.1007/s12613-022-2586-1
Cite this article as:
Tichen Wang, Guiju Sun, Jiushuai Deng, Hongxiang Xu, Guoyong Wang, Mingzhen Hu, Qizheng Qin,  and Xiaohao Sun, A depressant for marmatite flotation: Synthesis, characterisation and floatation performance, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1048-1056. https://doi.org/10.1007/s12613-022-2586-1
引用本文 PDF XML SpringerLink
研究论文

一种铁闪锌矿抑制剂的合成、特征及浮选响应

  • 通讯作者:

    邓久帅    E-mail: dengshuai689@163.com

    徐宏祥    E-mail: 201535@cumtb.edu.cn

文章亮点

  • (1) 合成了一种含锌无机盐(ZS),实现了铁闪锌矿的高效选择性抑制。
  • (2) 研究了ZS对方铅矿和铁闪锌矿浮选分离的影响。
  • (3) ZS在溶液中生成的$ {\mathrm{Z}\mathrm{n}\mathrm{O}}_{2}^{2-} $能够化学吸附在铁闪锌矿表面进而抑制其浮选。
  • 本研究合成了一种含锌无机盐(ZS)作为铁闪锌矿与方铅矿浮选分离的抑制剂,并研究了ZS对铁闪锌矿和方铅矿浮选行为的影响。当ZS用量为750 mg·L−1、pH = 4时,方铅矿回收率为88.89%,铁闪铁矿回收率为16.61%。采用紫外分光光度计、傅立叶红外光谱仪(FTIR)、X射线光电子能谱(XPS)分析和飞行时间二次离子质谱仪(ToF-SIMS)等手段研究了ZS对铁闪锌矿的抑制机理。吸附量测定和红外光谱分析结果表明,ZS选择性吸附在铁闪锌矿表面阻碍了捕收剂丁基黄药在矿物表面的进一步作用。XPS和ToF-SIMS分析结果表明,ZS在溶液中生成的$ {\mathrm{Z}\mathrm{n}\mathrm{O}}_{2}^{2-} $以化学吸附的方式吸附在铁闪锌矿表面,进而有效抑制了铁闪锌矿的浮选。
  • Research Article

    A depressant for marmatite flotation: Synthesis, characterisation and floatation performance

    + Author Affiliations
    • This study synthesised a zincic salt (ZS) as a depressant for marmatite–galena separation. The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests. 88.89% of the galena was recovered and 83.39% of the marmatite was depressed with ZS dosage of 750 mg·L−1 at pH = 4. The depression mechanism of ZS on marmatite was investigated by a variety of techniques, including adsorption measurements, Fourier transform infrared (FTIR), X-ray photoelectron spectroscopic (XPS) analysis, and time of flight secondary ion mass spectrometry (ToF-SIMS). Results of adsorption tests and FTIR reveal that ZS adsorbed on marmatite surface and impeded the subsequent adsorption of butyl xanthate (BX). The results of XPS and ToF-SIMS indicate that the $ {\mathrm{Z}\mathrm{n}\mathrm{O}}_{2}^{2-} $ released by ZS could be chemisorbed on the marmatite surface and depress marmatite flotation.
    • loading
    • [1]
      H. Lai, J.S. Deng, G.X. Fan, et al., Mechanism study of xanthate adsorption on sphalerite/marmatite surfaces by ToF-SIMS analysis and flotation, Minerals, 9(2019), No. 4, art. No. 205. doi: 10.3390/min9040205
      [2]
      Y. Chen, J.H. Chen, and J. Guo, A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite, Miner. Eng., 23(2010), No. 14, p. 1120. doi: 10.1016/j.mineng.2010.07.005
      [3]
      S.M. Wen, J. Liu, and J.S. Deng, Interactions among components of fluid inclusions in sulfide mineral, mineral surfaces, and collectors, [in] Fluid Inclusion Effect in Flotation of Sulfide Minerals, Elsevier, Amsterdam, 2021, p. 179.
      [4]
      J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
      [5]
      B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
      [6]
      W.B. Liu, W.X. Huang, F. Rao, Z.L. Zhu, Y.M. Zheng, and S.M. Wen, Utilization of DTAB as a collector for the reverse flotation separation of quartz from fluorapatite, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 446. doi: 10.1007/s12613-021-2321-3
      [7]
      B. Feng, C.H. Zhong, L.Z. Zhang, Y.T. Guo, T. Wang, and Z.Q. Huang, Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng., 146(2020), art. No. 106142. doi: 10.1016/j.mineng.2019.106142
      [8]
      X. Zhang, M.Z. Huangfu, J.S. Deng, et al., Surface characteristics and flotation behaviours of specularite as influenced by lead ion modification, Sep. Purif. Technol., 276(2021), art. No. 119384. doi: 10.1016/j.seppur.2021.119384
      [9]
      W.Y. Cui, Y.C. Liu, L.X. Liang, and J.H. Chen, Cyanide-free separation of high pyrrhotite Zn–S bulk concentrate, Miner. Eng., 170(2021), art. No. 107052. doi: 10.1016/j.mineng.2021.107052
      [10]
      X.R. Zhang, W. Xiong, L. Lu, et al., A novel synthetic polymer depressant for the flotation separation of chalcopyrite and galena and insights into its interfacial adsorption mechanism, Sep. Purif. Technol., 279(2021), art. No. 119658. doi: 10.1016/j.seppur.2021.119658
      [11]
      J. Wang, Q. Zhang, Y.Q. Qiu, L.J. Li, J.J. Ye, and W.Y. Cui, The first principles of the crystal structure and active sites of calcite, Chin. J. Eng., 39(2017), No. 4, p. 487.
      [12]
      S.D. Zhang, Z.B. Deng, X. Xie, and X. Tong, Study on the depression mechanism of calcium on the flotation of high-iron sphalerite under a high-alkalinity environment, Miner. Eng., 160(2021), art. No. 106700. doi: 10.1016/j.mineng.2020.106700
      [13]
      R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Surface chemical study of the selective separation of chalcopyrite and marmatite, Min. Sci. Technol. China, 20(2010), No. 4, p. 542. doi: 10.1016/S1674-5264(09)60240-4
      [14]
      X.Z. Bu, F.F. Chen, W. Chen, and Y.H. Ding, The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system, Appl. Surf. Sci., 479(2019), p. 303. doi: 10.1016/j.apsusc.2019.02.113
      [15]
      W.Q. Qin, F. Jiao, W. Sun, et al., Effects of sodium salt of N,N-dimethyldi-thiocarbamate on floatability of chalcopyrite, sphalerite, marmatite and its adsorption properties, Colloids Surf. A, 421(2013), p. 181. doi: 10.1016/j.colsurfa.2013.01.009
      [16]
      W.Z. Yin and Y. Tang, Interactive effect of minerals on complex ore flotation: A brief review, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 571. doi: 10.1007/s12613-020-1999-y
      [17]
      J.S. Deng, Z.Y. Bai, B. Zhao, et al., Opportunities and challenges in microwave absorption of nickel–carbon composites, Phys. Chem. Chem. Phys., 23(2021), No. 37, p. 20795. doi: 10.1039/D1CP03522C
      [18]
      Q. Wei, F. Jiao, L.Y. Dong, X.D. Liu, and W.Q. Qin, Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation, Trans. Nonferrous Met. Soc. China, 31(2021), No. 6, p. 1784. doi: 10.1016/S1003-6326(21)65616-9
      [19]
      J. Liu, J.M. Hao, W.C. Dong, and Y. Zeng, Depression mechanism of environment-friendly depressant dithiocarbamate chitosan in flotation separation of Cu–Zn sulfide, Colloids Surf. A, 615(2021), art. No. 126290. doi: 10.1016/j.colsurfa.2021.126290
      [20]
      H. Wang, S.M. Wen, G. Han, and Q.C. Feng, Effect of copper ions on surface properties of ZnSO4-depressed sphalerite and its response to flotation, Sep. Purif. Technol., 228(2019), art. No. 115756. doi: 10.1016/j.seppur.2019.115756
      [21]
      Y. Jia, Y. Zhang, Y.G. Huang, L.L. Chen, M. Wang, and Y.L. Zhang, Synthesis of trimethylacetyl thiobenzamide and its flotation separation performance of galena from sphalerite, Appl. Surf. Sci., 569(2021), art. No. 151055. doi: 10.1016/j.apsusc.2021.151055
      [22]
      Q.C. Feng, S.M. Wen, J.S. Deng, and W.J. Zhao, Combined DFT and XPS investigation of enhanced adsorption of sulfide species onto cerussite by surface modification with chloride, Appl. Surf. Sci., 425(2017), p. 8. doi: 10.1016/j.apsusc.2017.07.017
      [23]
      H.L. Li, W.N. Xu, F.F. Jia, J.B. Li, S.X. Song, and Y. Nahmad, Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 857. doi: 10.1007/s12613-020-2078-0
      [24]
      H. Wang, S.M. Wen, G. Han, L. Xu, and Q.C. Feng, Activation mechanism of lead ions in the flotation of sphalerite depressed with zinc sulfate, Miner. Eng., 146(2020), art. No. 106132. doi: 10.1016/j.mineng.2019.106132
      [25]
      J.S. Deng, H. Lai, M. Chen, et al., Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study, Miner. Eng., 136(2019), p. 168. doi: 10.1016/j.mineng.2019.02.012

    Catalog


    • /

      返回文章
      返回