留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  527
  • HTML全文浏览量:  170
  • PDF下载量:  37
  • 被引次数: 0
Huazhe Jiao, Wenbo Yang, Zhu’en Ruan, Jianxin Yu, Juanhong Liu, and Yixuan Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1538-1547. https://doi.org/10.1007/s12613-022-2587-0
Cite this article as:
Huazhe Jiao, Wenbo Yang, Zhu’en Ruan, Jianxin Yu, Juanhong Liu, and Yixuan Yang, Microscale mechanism of tailing thickening in metal mines, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1538-1547. https://doi.org/10.1007/s12613-022-2587-0
引用本文 PDF XML SpringerLink
研究论文

金属矿山尾矿浓密微观机理



  • 通讯作者:

    阮竹恩    E-mail: ustb_ruanzhuen@hotmail.com

文章亮点

  • (1) 运用拓扑学原理对孔隙进行精细化表征并分析孔隙结构的剪切演化机理。
  • (2) 从微观角度揭示连续动态条件下底流料浆内部水分排出过程。
  • (3) 发现孔隙结构与渗流通道之间的相互作用并深入分析导水通道演化对底流浓度的影响。
  • 超细尾矿颗粒形成的锁水絮体会破坏膏体制备过程中浓密机底流浓度。当研究深度脱水阶段时,尾砂浆体的微观结构和渗流特性之间的关系通常会被忽略。文章利用铜尾矿展开了全尾砂堆积床层剪切渗透性测试,借助CT扫描技术分析了微观孔隙的形态和几何分布情况,运用三维重构方法真实还原了浆料内部孔隙结构和渗流通道剪切演化对底流料浆脱水性能的影响。结果表明伴随剪切作用的发生,样品孔隙率有较大幅度的降低。添加剪切作用且搅拌时间为10 min时,样品连通孔隙比及吼道平均半径达到最大,分别为0.79和31.38μm。但在添加剪切作用后样品流速和绝对渗透性有不同幅度的降低,最大流速达到1.537μm/s,绝对渗透率提高了14.16%。剪切作用改变了导水通道的形成阶段和孔隙结构,孤立的孔隙与周围絮体连接形成分支通道,继而成为主渗流通道,形成了优势导水通道。
  • Research Article

    Microscale mechanism of tailing thickening in metal mines

    + Author Affiliations
    • Water-locking flocs formed by ultrafine tailings particles will damage the thickener underflow concentration in the thickening process during paste preparation. The relationship between the mesostructure and seepage characteristics of tail mortar is typically ignored when investigating the deep dehydration stage. A shearing seepage test of an unclassified tailing–sedimentation bed was performed with copper tailings, and the morphology and geometric distribution of micropores were analyzed via X-ray computed tomography. Moreover, the shearing evolution of the micropore structure and seepage channel was investigated to evaluate the dewatering performance of underflow slurry using a three-dimensional reconstruction approach. The results show that porosity decreases considerably under shearing. The connected-pore ratio and the average radius of the throat channel reach peak values of 0.79 and 31.38 μm, respectively, when shearing is applied for 10 min. However, the reverse seepage velocity and absolute permeability in the bed decrease to various extents after shearing. Meanwhile, the maximum flow rate reaches 1.537 μm/s and the absolute permeability increases by 14.16%. Shearing alters the formation process and the pore structure of the seepage channel. Isolated pores connect to the surrounding flocs to form branch channels, which then become the main seepage channel and create the dominant water-seepage flow channel.
    • loading
    • Supplementary Information-s12613-022-2587-0.docx
    • [1]
      M.N. Uugwanga and N.A. Kgabi, Heavy metal pollution index of surface and groundwater from around an abandoned mine site, Klein Aub, Phys. Chem. Earth Parts A/B/C, 124(2021), art. No. 103067. doi: 10.1016/j.pce.2021.103067
      [2]
      Y. Vasquez, C.M. Neculita, G. Caicedo, et al., Passive multi-unit field-pilot for acid mine drainage remediation: Performance and environmental assessment of post-treatment solid waste, Chemosphere, 291(2022), art. No. 133051. doi: 10.1016/j.chemosphere.2021.133051
      [3]
      P. Mazumder, A. Das, M. Khwairakpam, and A.S. Kalamdhad, A comprehensive insight into ecological risk assessment and remediation of metal contaminated coal mine soil: Towards a cleaner and sustainable environment, J. Cleaner Prod., 324(2021), art. No. 129185. doi: 10.1016/j.jclepro.2021.129185
      [4]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [5]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [6]
      H.Z. Jiao, W.L. Chen, A.X. Wu, et al., Flocculated unclassified tailings settling efficiency improvement by particle collision optimization in the feedwell, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2126. doi: 10.1007/s12613-021-2402-3
      [7]
      H.Z. Jiao, Y.C. Wu, H. Wang, et al., Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
      [8]
      P. Ofori, A.V. Nguyen, B. Firth, C. McNally, and M.A. Hampton, The role of surface interaction forces and mixing in enhanced dewatering of coal preparation tailings, Fuel, 97(2012), p. 262. doi: 10.1016/j.fuel.2012.02.048
      [9]
      M.S. Nasser and A.E. James, Effect of polyacrylamide polymers on floc size and rheological behaviour of kaolinite suspensions, Colloids Surf. A, 301(2007), No. 1-3, p. 311. doi: 10.1016/j.colsurfa.2006.12.080
      [10]
      Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
      [11]
      J.C. Winterwerp, A.J. Bale, M.C. Christie, et al., Flocculation and settling velocity of fine sediment, Proc. Mar. Sci., 5(2002), p. 25. doi: 10.1016/S1568-2692(02)80006-7
      [12]
      L.H. Yang, H.J. Wang, H. Li, and X. Zhou, Effect of high mixing intensity on rheological properties of cemented paste backfill, Minerals, 9(2019), No. 4, art. No. 240. doi: 10.3390/min9040240
      [13]
      Z.B. Wang, J. Nan, X.Y. Ji, and Y.M. Yang, Effect of the micro-flocculation stage on the flocculation/sedimentation process: The role of shear rate, Sci. Total Environ., 633(2018), p. 1183. doi: 10.1016/j.scitotenv.2018.03.286
      [14]
      H.Z. Jiao, S.F. Wang, Y.X. Yang, and X.M. Chen, Water recovery improvement by shearing of gravity-thickened tailings for cemented paste backfill, J. Cleaner Prod., 245(2020), art. No. 118882. doi: 10.1016/j.jclepro.2019.118882
      [15]
      J. H. Qin, J. Zheng, and L. Li, An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 463. doi: 10.1016/j.ijmst.2021.02.004
      [16]
      H.J. Wang, Q.S. Peng, Y. Yang, and J.B. Guo. Research status and prospect of metal tailings thickening technology, Chin. J. Eng., 44(2022), No. 6, p. 971. doi: 10.13374/j.issn2095-9389.2021.01.11.001
      [17]
      D. Ma, H.Y. Duan, J.X. Zhang, X.W. Liu, and Z.H. Li, Numerical simulation of water-silt inrush hazard of fault rock: A three-phase flow model, Rock Mech. Rock Eng., 55(2022), No. 8, p. 5163. doi: 10.1007/s00603-022-02878-9
      [18]
      W. Sun, S.Y. Zhang, J.X. Li, and Z.Y. Li, Experimental study on energy dissipation of layered backfill under impact load, Constr. Build. Mater., 347(2022), art. No. 128478. doi: 10.1016/j.conbuildmat.2022.128478
      [19]
      G.L. Zhang, P.G. Ranjith, M.S.A. Perera, A. Haque, X. Choi, and K.S.M. Sampath, Characterization of coal porosity and permeability evolution by demineralisation using image processing techniques: A micro-computed tomography study, J. Nat. Gas Sci. Eng., 56(2018), p. 384. doi: 10.1016/j.jngse.2018.06.020
      [20]
      D. Zheng, W.D. Song, Y.Y. Tan, S. Cao, Z.L. Yang, and L.J. Sun, Fractal and microscopic quantitative characterization of unclassified tailings flocs, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1429. doi: 10.1007/s12613-020-2181-2
      [21]
      S.Y. Li, C.Y. Qiao, Z.M. Li, and Y.T. Hui, The effect of permeability on supercritical CO2 diffusion coefficient and determination of diffusive tortuosity of porous media under reservoir conditions, J. CO2 Util., 28(2018), p. 1.
      [22]
      K.Z. Zhang, S.L. Wang, L. Wang, et al., 3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by Micro-CT, J. Pet. Sci. Eng., 208(2022), art. No. 109675. doi: 10.1016/j.petrol.2021.109675
      [23]
      I. Tretiak and R.A. Smith, A parametric study of segmentation thresholds for X-ray CT porosity characterisation in composite materials, Composites Part A, 123(2019), p. 10. doi: 10.1016/j.compositesa.2019.04.029
      [24]
      H. Sazegaran and S.M.M. Nezhad, Cell morphology, porosity, microstructure and mechanical properties of porous Fe–C–P alloys, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 257. doi: 10.1007/s12613-020-1995-2
      [25]
      F.B. Chen, B. Xu, H.Z. Jiao, et al., Triaxial mechanical properties and microstructure visualization of BFRC, Constr. Build. Mater., 278(2021), art. No. 122275. doi: 10.1016/j.conbuildmat.2021.122275
      [26]
      G. Wang, X.J. Qin, D.Y. Han, and Z.Y. Liu, Study on seepage and deformation characteristics of coal microstructure by 3D reconstruction of CT images at high temperatures, Int. J. Min. Sci. Technol., 31(2021), No. 2, p. 175. doi: 10.1016/j.ijmst.2020.11.003
      [27]
      X.M. Ni, J. Miao, R.S. Lv, and X.Y. Lin, Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology, Fuel, 200(2017), p. 199. doi: 10.1016/j.fuel.2017.03.068
      [28]
      R. Nemati, J.R. Shahrouzi, and R. Alizadeh, A stochastic approach for predicting tortuosity in porous media via pore network modeling, Comput. Geotech., 120(2020), art. No. 103406. doi: 10.1016/j.compgeo.2019.103406
      [29]
      M. Bankim, V.P.G. Vikram, and T.N.S. Ranjith, An insight into pore-network models of high-temperature heat-treated sandstones using computed tomography, J. Nat. Gas Sci. Eng., 77(2020), art. No. 103227. doi: 10.1016/j.jngse.2020.103227
      [30]
      S. Babaei, S.C. Seetharam, A. Dizier, G. Steenackers, and B. Craeye, Permeability of cementitious materials using a multiscale pore network model, Constr. Build. Mater., 312(2021), art. No. 125298. doi: 10.1016/j.conbuildmat.2021.125298
      [31]
      C.Z. Qin, and V.B. Harald, A dynamic pore-network model for spontaneous imbibition in porous media, Adv. Water Resour., 133(2019), art. No. 103420. doi: 10.1016/j.advwatres.2019.103420
      [32]
      J. Yao, W.H. Song, D.Y. Wang, H. Sun, and Y. Li, Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media, Int. J. Heat Mass Transfer, 141(2019), p. 156. doi: 10.1016/j.ijheatmasstransfer.2019.06.077
      [33]
      M.P.P.C. Santos and M.S. Carvalho, Pore network model for retrograde gas flow in porous media, J. Pet. Sci. Eng., 185(2020), art. No. 106635. doi: 10.1016/j.petrol.2019.106635
      [34]
      T. Gao, W. Sun, Z. Liu, and H.Y. Cheng, Investigation on fracture characteristics and failure pattern of inclined layered cemented tailings backfill, Constr. Build. Mater., 343(2022), art. No. 128110. doi: 10.1016/j.conbuildmat.2022.128110
      [35]
      Q.S. Chen, S. Sun, and Y. Wang, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. doi: 10.1016/j.chemosphere.2022.137412
      [36]
      Q.X. Huang, Experimental research of overburden movement and subsurface water seeping in shallow seam mining, J. Univ. Sci. Technol. Beijing, 14(2007), No. 6, p. 483. doi: 10.1016/S1005-8850(07)60114-5
      [37]
      M.S. Mehdi, O. Pouria, and N. Fatemeh, Salinity of injection water and its impact on oil recovery absolute permeability, residual oil saturation, interfacial tension and capillary pressure, Egypt. J. Pet, 26(2017), No. 2, p. 301. doi: 10.1016/j.ejpe.2016.05.003
      [38]
      O.B. Rizvandi, X.Y. Miao, and H.L. Frandsen, Fast and stable approximation of laminar and turbulent flows in channels by Darcy’s Law, Alex. Eng. J., 60(2021), No. 2, p. 2155. doi: 10.1016/j.aej.2020.12.033
      [39]
      H.T. Ran, B. Zheng, and Y.Q. Shang, A parallel finite element variational multiscale method for the Navier-Stokes equations with nonlinear slip boundary conditions, Appl. Numer. Math., 168(2021), p. 274. doi: 10.1016/j.apnum.2021.06.004
      [40]
      L. Li, C.D. Ma, S.P. Hu, et al., Effect of the benzene ring of the dispersant on the rheological characteristics of coal-water slurry: Experiments and theoretical calculations, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 515. doi: 10.1016/j.ijmst.2021.02.001

    Catalog


    • /

      返回文章
      返回