留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(8)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  842
  • HTML全文浏览量:  243
  • PDF下载量:  73
  • 被引次数: 0
Chao Gu, Ziyu Lyu, Qin Hu,  and Yanping Bao, Investigation of the structural, electronic and mechanical properties of CaO–SiO2 compound particles in steel based on density functional theory, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 744-755. https://doi.org/10.1007/s12613-022-2588-z
Cite this article as:
Chao Gu, Ziyu Lyu, Qin Hu,  and Yanping Bao, Investigation of the structural, electronic and mechanical properties of CaO–SiO2 compound particles in steel based on density functional theory, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 744-755. https://doi.org/10.1007/s12613-022-2588-z
引用本文 PDF XML SpringerLink
研究论文

基于密度泛函理论的钢中CaO-SiO2复合夹杂物的结构、电子和机械性能研究

  • 通讯作者:

    顾超    E-mail: guchao@ustb.edu.cn

    包燕平    E-mail: baoyp@ustb.edu.cn

文章亮点

  • (1) 利用密度泛函理论对CaO–SiO2体系中不同夹杂物的结构、电子和力学性质进行了全面研究
  • (2) 计算了CaO–SiO2体系中8种相的晶体结构,与实验结果吻合良好
  • (3) 计算并比较了不同CaO–SiO2夹杂物的内聚能和形成能
  • (4) 计算了CaO–SiO2体系中8种夹杂物的力学性能,为进一步研究其对断裂等行为的影响提供了坚实的基础。
  • CaO–SiO2是液态钢中常见的一系列氧化物夹杂,常作为裂纹源对钢的力学性能产生严重的影响。然而,由于夹杂物尺寸较小,且在钢中出现的随机性,通过实验对其性能进行研究难度较大。为解决目前夹杂物性能数据库不全的问题,本研究基于第一原理密度泛函理论,对钢中不同的CaO–SiO2复合夹杂物性质进行了深入的研究。首先通过热力学计算确定了CaO–SiO2夹杂物体系中可能存在的相,包括γ-C2S、α'L-C2S、α'H-C2S、β-C2S、C3S2、C3S、CS和Ps-CS。结果表明,计算的该8种相的晶体结构与实验结果吻合良好。根据计算的形成能,该8种相都是稳定的,其中γ-C2S是最稳定的。O原子对这些相的反应性贡献最大。8种相的杨氏模量在100.63–132.04 GPa的范围内,泊松比在0.249–0.281的范围内。该研究全面阐明了CaO–SiO2体系中不同夹杂物的性能,完善了相应的性能数据库,为抗断裂钢中夹杂物设计及行为预测提供了基础。
  • Research Article

    Investigation of the structural, electronic and mechanical properties of CaO–SiO2 compound particles in steel based on density functional theory

    + Author Affiliations
    • CaO–SiO2 compounds compromise one of the most common series of oxide particles in liquid steels, which could significantly affect the service performance of the steels as crack initiation sites. However, the structural, electronic, and mechanical properties of the compounds in CaO–SiO2 system are still not fully clarified due to the difficulties in the experiments. In this study, a thorough investigation of these properties of CaO–SiO2 compound particles in steels was conducted based on first-principles density functional theory. Corresponding phases were determined by thermodynamic calculation, including gamma dicalcium silicate (γ-C2S), alpha-prime (L) dicalcium silicate (${\text α\,}_{\rm{L }}{'} $-C2S), alpha-prime (H) dicalcium silicate (${\text α\,}_{\rm{H }}{'} $-C2S), alpha dicalcium silicate (α-C2S), rankinite (C3S2), hatrurite (C3S), wollastonite (CS), and pseudo-wollastonite (Ps-CS). The results showed that the calculated crystal structures of the eight phases agree well with the experimental results. All the eight phases are stable according to the calculated formation energies, and γ-C2S is the most stable. O atom contributes the most to the reactivity of these phases. The Young’s modulus of the eight phases is in the range of 100.63–132.04 GPa. Poisson’s ratio is in the range of 0.249–0.281. This study provided further understanding concerning the CaO–SiO2 compound particles in steels and fulfilled the corresponding property database, paving the way for inclusion engineering and design in terms of fracture-resistant steels.
    • loading
    • [1]
      L. Wang, B. Song, Z.B. Yang, et al., Effects of Mg and La on the evolution of inclusions and microstructure in Ca–Ti treated steel, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1940. doi: 10.1007/s12613-021-2285-3
      [2]
      H. Feng, P.C. Lu, H.B. Li, and Z.H. Jiang, Effect of Mg pretreatment and Ce addition on cleanliness and inclusion evolution in high-nitrogen stainless bearing steels, Metall. Mater. Trans. B, 53(2022), No. 2, p. 864. doi: 10.1007/s11663-021-02409-x
      [3]
      J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
      [4]
      Q. Zhao, X.H. Mei, L. Gao, et al., Fundamental research on fluorine-free ladle furnace slag for axle steel of electric multiple unit vehicles, Metals, 11(2021), No. 12, art. No. 1973. doi: 10.3390/met11121973
      [5]
      C.S. Liu, Y. Kacar, B. Webler, and P.C. Pistorius, Chemical composition modification of inclusions in steels by controlled Ca treatment, Metall. Mater. Trans. B, 52(2021), No. 5, p. 2837. doi: 10.1007/s11663-021-02287-3
      [6]
      W. Liu, S.F. Yang, J.S. Li, F. Wang, and H.B. Yang, Numerical model of inclusion separation from liquid metal with consideration of dissolution in slag, J. Iron Steel Res. Int., 26(2019), No. 11, p. 1147. doi: 10.1007/s42243-018-0212-2
      [7]
      W.S. Wang, H.Y. Zhu, M.M. Song, J.L. Li, and Z.L. Xue, Effect of ferromanganese additions on non-metallic inclusion characteristics in TRIP steel, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1464. doi: 10.1007/s42243-022-00768-6
      [8]
      M. Ashizuka, Y. Aimoto, and T. Okuno, Mechanical properties of sintered silicate crystals (Part 1), J. Ceram. Soc. Jpn, 97(1989), No. 1125, p. 544. doi: 10.2109/jcersj.97.544
      [9]
      Q.X. Jiang, V.M. Bertolo, V.A. Popovich, J. Sietsma, and C.L. Walters, Relating matrix stress to local stress on a hard microstructural inclusion for understanding cleavage fracture in high strength steel, Int. J. Fract., 232(2021), No. 1, p. 1. doi: 10.1007/s10704-021-00587-y
      [10]
      W. Xiao, Y.P. Bao, C. Gu, et al., Ultrahigh cycle fatigue fracture mechanism of high-quality bearing steel obtained through different deoxidation methods, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 804. doi: 10.1007/s12613-021-2253-y
      [11]
      D. Spriestersbach, P. Grad, and E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, 64(2014), p. 114. doi: 10.1016/j.ijfatigue.2014.03.003
      [12]
      S.A. Ayoub and J.B. Lagowski, Optimizing the performance of the bulk heterojunction organic solar cells based on DFT simulations of their interfacial properties, Mater. Des., 156(2018), p. 558. doi: 10.1016/j.matdes.2018.07.016
      [13]
      X.G. Gong, W.W. Xu, C. Cui, et al., Exploring alloying effect on phase stability and mechanical properties of γ″-Ni3Nb precipitates with first-principles calculations, Mater. Des., 196(2020), art. No. 109174. doi: 10.1016/j.matdes.2020.109174
      [14]
      J. Hui, X.Y. Zhang, T. Liu, W.G. Liu, and B. Wang, First-principles calculation of twin boundary energy and strength/embrittlement in hexagonal close-packed titanium, Mater. Des., 213(2022), art. No. 110331. doi: 10.1016/j.matdes.2021.110331
      [15]
      B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 787. doi: 10.1007/s12613-022-2421-8
      [16]
      M.I. Khan, H. Arshad, M. Rizwan, et al., Investigation of structural, electronic, magnetic and mechanical properties of a new series of equiatomic quaternary Heusler alloys CoYCrZ (Z = Si, Ge, Ga, Al): A DFT study, J. Alloys Compd., 819(2020), art. No. 152964. doi: 10.1016/j.jallcom.2019.152964
      [17]
      A.J. Cinthia, G.S. Priyanga, R. Rajeswarapalanichamy, and K. Iyakutti, Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M = Be, Mg, Ca, Sr, Ba), J. Phys. Chem. Solids, 79(2015), p. 23. doi: 10.1016/j.jpcs.2014.10.021
      [18]
      S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, Insight into structural, electronic, magnetic, mechanical, and thermodynamic properties of actinide perovskite BaPuO3, J. Supercond. Nov. Magn., 31(2018), No. 10, p. 3201. doi: 10.1007/s10948-018-4574-2
      [19]
      X.J. Liu, J.C. Yang, F. Zhang, X.Y. Fu, H.W. Li, and C.Q. Yang, Experimental and DFT study on cerium inclusions in clean steels, J. Rare Earths, 39(2021), No. 4, p. 477. doi: 10.1016/j.jre.2020.07.021
      [20]
      S.J. Edrees, M.M. Shukur, and M.M. Obeid, First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph, Comput. Condens. Matter, 14(2018), p. 20. doi: 10.1016/j.cocom.2017.12.004
      [21]
      P. Rejmak, J.S. Dolado, M.A.G. Aranda, and A. Ayuela, First-principles calculations on polymorphs of dicalcium silicate–Belite, a main component of Portland cement, J. Phys. Chem. C, 123(2019), No. 11, p. 6768. doi: 10.1021/acs.jpcc.8b10045
      [22]
      C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
      [23]
      C. Remy, D. Andrault, and M. Madon, High-temperature, high-pressure X-ray investigation of dicalcium silicate, J. Am. Ceram. Soc., 80(1997), No. 4, p. 851.
      [24]
      K. Sasaki, H. Ishida, Y. Okada, and T. Mitsuda, Highly reactive β-dicalcium silicate: V, influence of specific surface area on hydration, J. Am. Ceram. Soc., 76(1993), No. 4, p. 870. doi: 10.1111/j.1151-2916.1993.tb05308.x
      [25]
      H. Toraya and S. Yamazaki, Simulated annealing structure solution of a new phase of dicalcium silicate Ca2SiO4 and the mechanism of structural changes from α-dicalcium silicate hydrate to $ {\text α}_{\rm{L }}{\text{'}} $-dicalcium silicate via the new phase, Acta Crystallogr. Sect. B, 58(2002), No. 4, p. 613. doi: 10.1107/S0108768102005189
      [26]
      W.M. Kriven, Possible alternative transformation tougheners to zirconia: Crystallographic aspects, J. Am. Ceram. Soc., 71(1988), No. 12, p. 1021. doi: 10.1111/j.1151-2916.1988.tb05786.x
      [27]
      Y.V. Seryotkin, E.V. Sokol, and S.N. Kokh, Natural pseudowollastonite: Crystal structure, associated minerals, and geological context, Lithos, 134-135(2012), p. 75. doi: 10.1016/j.lithos.2011.12.010
      [28]
      T. Gasparik, K. Wolf, and C.M. Smith, Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa, Am. Mineral., 79(1994), p. 1219.
      [29]
      S. Milani, D. Comboni, P. Lotti, et al., Crystal structure evolution of CaSiO3 polymorphs at earth’s mantle pressures, Minerals, 11(2021), No. 6, art. No. 652. doi: 10.3390/min11060652
      [30]
      A.E. Zadov, V.M. Gazeev, N.N. Pertsev, et al., Discovery and investigation of a natural analog of calcio-olivine (γ-Ca2SiO4), Dokl. Earth Sci., 423(2008), No. 2, p. 1431. doi: 10.1134/S1028334X08090237
      [31]
      M.D. Segall, P.J.D. Lindan, M.J. Probert, et al., First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14(2002), No. 11, p. 2717. doi: 10.1088/0953-8984/14/11/301
      [32]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [33]
      C.C. Qi, D. Spagnoli, and A. Fourie, Structural, electronic, and mechanical properties of calcium aluminate cements: Insight from first-principles theory, Constr. Build. Mater., 264(2020), art. No. 120259. doi: 10.1016/j.conbuildmat.2020.120259
      [34]
      Y.Y. Zhang, X. Liu, Z.H. Xiong, and Z.G. Zhang, Compressional behavior of MgCr2O4 spinel from first-principles simulation, Sci. China Earth Sci., 59(2016), No. 5, p. 989. doi: 10.1007/s11430-016-5269-9
      [35]
      S.K. Saravana Karthikeyan, P. Santhoshkumar, Y.C. Joe, et al., Understanding of the elastic constants, energetics, and bonding in dicalcium silicate using first-principles calculations, J. Phys. Chem. C, 122(2018), No. 42, p. 24235. doi: 10.1021/acs.jpcc.8b06630
      [36]
      W. Eysel and T. Hahn, Polymorphism and solid solution of Ca2GeO4 and Ca2SiO4, Z. Krist. Cryst. Mater., 131(1970), No. 1-6, p. 322. doi: 10.1524/zkri.1970.131.16.322
      [37]
      M.Y. Chen, Z.G. Xia, M.S. Molokeev, and Q.L. Liu, Structural phase transformation and luminescent properties of Ca(2–x)SrxSiO4: Ce3+ orthosilicate phosphors, Inorg. Chem., 54(2015), No. 23, p. 11369. doi: 10.1021/acs.inorgchem.5b01955
      [38]
      A.M. Ll'Inets, Y.A. Malinovskii, and N.N. Nevskii, Crystal structure of the rhombohedral modification of tricalcium silicate Ca3SiO5, Sov. Phys. Dokl., 20(1985), p. 191.
      [39]
      I. Kusachi, C. Henmi, A. Kawahara, and K. Henmi, The structure of rankinite, Mineral. J., 8(1975), No. 1, p. 38. doi: 10.2465/minerj.8.38
      [40]
      H. Manzano, J.S. Dolado, and A. Ayuela, Structural, mechanical, and reactivity properties of tricalcium aluminate using first-principles calculations, J. Am. Ceram. Soc., 92(2009), No. 4, p. 897. doi: 10.1111/j.1551-2916.2009.02963.x
      [41]
      X. Gao, W.T. Zhang, X.M. Wang, X. Huang, and Z. Zhao, Charge compensation effects of alkali metal ions M+ (Li+, Na+, K+) on luminescence enhancement in red-emitting Ca3Si2O7: Eu3+ phosphors, J. Alloys Compd., 893(2022), art. No. 162265. doi: 10.1016/j.jallcom.2021.162265
      [42]
      I. Razumovskii, B. Bokstein, A. Logacheva, I. Logachev, and M. Razumovsky, Cohesive strength and structural stability of the Ni-based superalloys, Materials, 15(2021), No. 1, art. No. 200. doi: 10.3390/ma15010200
      [43]
      Y. Kitagawa, J. Ueda, K. Fujii, et al., Site-selective Eu3+ luminescence in the monoclinic phase of YSiO2N, Chem. Mater., 33(2021), No. 22, p. 8873. doi: 10.1021/acs.chemmater.1c03139
      [44]
      I. Petousis, D. Mrdjenovich, E. Ballouz, et al., High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials, Sci. Data, 4(2017), art. No. 160134. doi: 10.1038/sdata.2016.134
      [45]
      Y. Tao, Y.D. Mu, W.Q. Zhang, and F.Z. Wang, Screening out reactivity-promoting candidates for γ-Ca2SiO4 carbonation by first-principles calculations, Front. Mater., 7(2020), art. No. 299. doi: 10.3389/fmats.2020.00299
      [46]
      F. Mouhat and F.X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90(2014), No. 22, art. No. 224104. doi: 10.1103/PhysRevB.90.224104
      [47]
      S. Chandrasekar and S. Santhanam, A calculation of the bulk modulus of polycrystalline materials, J. Mater. Sci., 24(1989), No. 12, p. 4265. doi: 10.1007/BF00544497
      [48]
      Z.M. Sun, S. Li, R. Ahuja, and J.M. Schneider, Calculated elastic properties of M2AlC (M = Ti, V, Cr, Nb, and Ta), Solid State Commun., 129(2004), No. 9, p. 589. doi: 10.1016/j.ssc.2003.12.008
      [49]
      N.I. Demidenko and A.P. Stetsovskii, Correlation between elastic properties of wollastonite-based materials and sintering temperature, Glass Ceram., 60(2003), No. 7, p. 217.
      [50]
      K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino, Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker, Cem. Concr. Res., 31(2001), No. 4, p. 555. doi: 10.1016/S0008-8846(00)00505-6
      [51]
      S. Abraham, R. Bodnar, J. Raines, and Y.F. Wang, Inclusion engineering and metallurgy of calcium treatment, J. Iron Steel Res. Int., 25(2018), No. 2, p. 133. doi: 10.1007/s42243-018-0017-3
      [52]
      L. Holappa and O. Wijk, Inclusion engineering, [in] S. Seetharaman, ed., Treatise on Process Metallurgy, Elsevier, Amsterdam, 2014, p. 347.
      [53]
      A. Costa e Silva, Thermodynamic aspects of inclusion engineering in steels, Rare Met., 25(2006), No. 5, p. 412. doi: 10.1016/S1001-0521(06)60077-6
      [54]
      U. Karr, Y. Sandaiji, R. Tanegashima, et al., Inclusion initiated fracture in spring steel under axial and torsion very high cycle fatigue loading at different load ratios, Int. J. Fatigue, 134(2020), art. No. 105525. doi: 10.1016/j.ijfatigue.2020.105525
      [55]
      D.P. Fairchild, D.G. Howden, and W.T. Clark, The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage, Metall. Mater. Trans. A, 31(2000), No. 3, p. 641. doi: 10.1007/s11661-000-0007-4
      [56]
      C. Gu, W.Q. Liu, J.H. Lian, and Y.P. Bao, In-depth analysis of the fatigue mechanism induced by inclusions for high-strength bearing steels, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 826. doi: 10.1007/s12613-020-2223-9
      [57]
      C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, and D.L. McDowell, Microstructure-sensitive modeling of high cycle fatigue, Int. J. Fatigue, 32(2010), No. 3, p. 512. doi: 10.1016/j.ijfatigue.2009.03.021
      [58]
      C. Gu, J.H. Lian, Y.P. Bao, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the microcrack initiation around inclusions, Mater. Sci. Eng. A, 751(2019), p. 133. doi: 10.1016/j.msea.2019.02.058
      [59]
      C. Gu, J.H. Lian, Y.P. Bao, Q.G. Xie, and S. Münstermann, Microstructure-based fatigue modelling with residual stresses: Prediction of the fatigue life for various inclusion sizes, Int. J. Fatigue, 129(2019), art. No. 105158. doi: 10.1016/j.ijfatigue.2019.06.018

    Catalog


    • /

      返回文章
      返回