留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  395
  • HTML全文浏览量:  134
  • PDF下载量:  37
  • 被引次数: 0
Dan Zhang, Chunyan Zhang, Xuan Zheng, Yizhuo Zhao, Xinyu Shi, Baomin Luo, Yuzhu Li, Guangyin Liu, Xiaodi Liu, and Chuang Yu, Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1152-1161. https://doi.org/10.1007/s12613-022-2590-5
Cite this article as:
Dan Zhang, Chunyan Zhang, Xuan Zheng, Yizhuo Zhao, Xinyu Shi, Baomin Luo, Yuzhu Li, Guangyin Liu, Xiaodi Liu, and Chuang Yu, Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1152-1161. https://doi.org/10.1007/s12613-022-2590-5
引用本文 PDF XML SpringerLink
研究论文

简单合成四氧化三锰多面体与氮掺杂蜂窝碳的复合材料作为高性能锂离子电池负极材料

  • 通讯作者:

    张丹    E-mail: danzhangny@163.com

    余创    E-mail: cyu2020@hust.edu.cn

文章亮点

  • (1) 开发了一种四氧化三锰与氮掺杂蜂窝碳复合材料的简单制备方法。
  • (2) 四氧化三锰纳米多面体均匀的长在氮掺杂蜂窝碳上并与之形成了较强的化学键。
  • (3) 独特的结构显著地提升了电化学反应动力学。
  • 由于四氧化三锰基氧化物负极材料体积变化大、导电性差,且其循环寿命短,倍率性能差,阻碍了它们的发展。在这项研究中,我们使用一种智能且简单的合成方法成功地制备了四氧化三锰与氮掺杂蜂窝碳复合材料。四氧化三锰纳米多面体生长在氮掺杂蜂窝碳上,这明显减轻了充放电过程中的体积变化,而且也改善了电化学反应动力学。更重要的是,四氧化三锰与氮掺杂蜂窝碳复合材料中的Mn–O–C键有利于电化学可逆性。四氧化三锰与氮掺杂蜂窝碳复合材料的这些特征是其优异电化学性能的原因。当用于锂离子电池时,在1 A·g−1下进行350次循环后,四氧化三锰与氮掺杂蜂窝碳负极表现出598 mAh·g−1的高可逆容量。即使在2 A·g−1下,四氧化三锰与氮掺杂蜂窝碳负极仍能提供472 mAh·g−1的高容量。这项工作为合成和开发锰基氧化物储能材料提供了新的前景。
  • Research Article

    Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries

    + Author Affiliations
    • Because of their large volume variation and inferior electrical conductivity, Mn3O4-based oxide anode materials have short cyclic lives and poor rate capability, which obstructs their development. In this study, we successfully prepared a Mn3O4/N-doped honeycomb carbon composite using a smart and facile synthetic method. The Mn3O4 nanopolyhedra are grown on N-doped honeycomb carbon, which evidently mitigates the volume change in the charging and discharging processes but also improves the electrochemical reaction kinetics. More importantly, the Mn–O–C bond in the Mn3O4/N-doped honeycomb carbon composite benefits electrochemical reversibility. These features of the Mn3O4/N-doped honeycomb carbon (NHC) composite are responsible for its superior electrochemical performance. When used for Li-ion batteries, the Mn3O4/N-doped honeycomb carbon anode exhibits a high reversible capacity of 598 mAh·g−1 after 350 cycles at 1 A·g−1. Even at 2 A·g−1, the Mn3O4/NHC anode still delivers a high capacity of 472 mAh·g−1. This work provides a new prospect for synthesizing and developing manganese-based oxide materials for energy storage.
    • loading
    • Supplementary Information-s12613-022-2590-5.docx
    • [1]
      Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
      [2]
      R.M. Tao, T.Y. Zhang, S.S. Tan, et al., Insight into the fast-rechargeability of a novel Mo1.5W1.5Nb14O44 anode material for high-performance lithium-ion batteries, Adv. Energy Mater., 12(2022), No. 36, art. No. 2200519. doi: 10.1002/aenm.202200519
      [3]
      W.X. Wang, F.Y. Xiong, S.H. Zhu, J.H. Chen, J. Xie, and Q.Y. An, Defect engineering in molybdenum-based electrode materials for energy storage, eScience, 2(2022), No. 3, p. 278. doi: 10.1016/j.esci.2022.04.005
      [4]
      X. Guo, Z.J. Sun, H. Ge, et al., MnOx bound on oxidized multi-walled carbon nanotubes as anode for lithium-ion batteries, Chem. Eng. J., 426(2021), art. No. 131335. doi: 10.1016/j.cej.2021.131335
      [5]
      Z.G. Cao, Y.B. Yang, J.J. Qin, and Z.X. Su, A core–shell porous MnO2/carbon nanosphere composite as the anode of lithium-ion batteries, J. Power Sources, 491(2021), art. No. 229577. doi: 10.1016/j.jpowsour.2021.229577
      [6]
      X. Li, W.C. Yue, W.B. Li, et al., Rational design of 3D net-like carbon based Mn3O4 anode materials with enhanced lithium storage performance, New J. Chem., 46(2022), No. 27, p. 13220. doi: 10.1039/D2NJ01618D
      [7]
      Y.F. Deng, L.N. Wan, Y. Xie, X.S. Qin, and G.H. Chen, Recent advances in Mn-based oxides as anode materials for lithium ion batteries, RSC Adv., 4(2014), No. 45, p. 23914. doi: 10.1039/C4RA02686A
      [8]
      W. Yao, W.J. Qiu, Z.X. Xu, J.G. Xu. J.H. Luo, and Y.C. Wen, Two-dimensional sulfur-doped Mn3O4 quantum dots/reduced graphene oxide nanosheets as high-rate anode materials for lithium storage, Ceram. Int., 44(2018), No. 17, p. 21734. doi: 10.1016/j.ceramint.2018.08.267
      [9]
      B.B. Kopuklu, A. Tasdemir, S.A. Gursel, and A. Yurum, High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode, Carbon, 174(2021), p. 158. doi: 10.1016/j.carbon.2020.12.049
      [10]
      L. Hou, B.L. Xing, H.H. Zeng, et al., Aluminothermic reduction synthesis of Si/C composite nanosheets from waste vermiculite as high-performance anode materials for lithium-ion batteries, J. Alloys Compd., 922(2022), art. No. 166134. doi: 10.1016/j.jallcom.2022.166134
      [11]
      A.M. Huang, Y.C. Ma, J. Peng, et al., Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience, 1(2021), No. 2, p. 141. doi: 10.1016/j.esci.2021.11.006
      [12]
      C.Y. Zhang, Y.Z. Li, X.X. Liu, X. Zheng, Y.Z. Zhao, and D. Zhang, Facile synthesis of Fe24N10/porous carbon as a novel high-performance anode material for lithium-ion batteries, Mater. Lett., 300(2021), art. No. 130196. doi: 10.1016/j.matlet.2021.130196
      [13]
      N.N. Yao, Y. Zhang, X.H. Rao, et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 876. doi: 10.1007/s12613-022-2422-7
      [14]
      D. Zhang, C.Y. Zhang, Y.Z. Zhao, et al., Facilely fabricating V2O3@C nanosheets grown on rGO as high-performance negative materials for lithium-ion batteries by adjusting surface tension, Ind. Eng. Chem. Res., 61(2022), No. 34, p. 12600. doi: 10.1021/acs.iecr.2c02032
      [15]
      X.G. Han, L.M. Sun, F. Wang, and D. Sun, MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries, J. Mater. Chem. A, 6(2018), No. 39, p. 18891. doi: 10.1039/C8TA07682K
      [16]
      R. Huang, Y.F. Li, W.B. Liu, Y.H. Song, and L. Wang, N-doped honeycomb-like carbon networks loaded with ultra-fine Fe2O3 nanoparticles for lithium-ion batteries, Ceram. Int., 46(2020), No. 11, p. 17478. doi: 10.1016/j.ceramint.2020.04.043
      [17]
      H. Liu, M.M. Yang, Z. Yi, T. Duan, and W.T. Yao, Bi2O3/Bi nanocomposites confined by N-doped honeycomb-like porous carbon for high-rate and long-life lithium storage, Appl. Mater. Today, 22(2021), art. No. 100885. doi: 10.1016/j.apmt.2020.100885
      [18]
      L.C. Wang, L. Li, H.Y. Wang, J.B. Yang, F. Wu, and R.J. Chen, Stable conversion Mn3O4 Li-ion battery anode material with integrated hierarchical and core–shell structure, ACS Appl. Energy Mater., 2(2019), No. 7, p. 5206. doi: 10.1021/acsaem.9b00839
      [19]
      K.Z. Cao, Y.H. Jia, S.D. Wang, K.J. Huang, and H.Q. Liu, Mn3O4 nanoparticles anchored on carbon nanotubes as anode material with enhanced lithium storage, J. Alloys Compd., 854(2021), art. No. 157179. doi: 10.1016/j.jallcom.2020.157179
      [20]
      D. Zhang, G.S. Li, J.M. Fan, B.Y. Li, and L.P. Li, In situ synthesis of Mn3O4 nanoparticles on hollow carbon nanofiber as high-performance lithium-ion battery anode, Chem. Eur. J., 24(2018), No. 38, p. 9632. doi: 10.1002/chem.201801196
      [21]
      P.C. Nagajyothi, R. Ramaraghavulu, K. Munirathnam, K. Yoo, and J. Shim, One-pot hydrothermal synthesis: Enhanced MOR and OER performance using low-cost Mn3O4 electrocatalyst, Int. J. Hydrogen Energy, 46(2021), No. 27, p. 13946. doi: 10.1016/j.ijhydene.2020.11.147
      [22]
      A.G. Abd-Elrahim and D.M. Chun, Heterostructured Mn3O4-2D material nanosheets: One-step vacuum kinetic spray deposition and non-enzymatic H2O2 sensing, Ceram. Int., 47(2021), No. 24, p. 35111. doi: 10.1016/j.ceramint.2021.09.054
      [23]
      Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629. doi: 10.1007/s12613-021-2249-7
      [24]
      D. Zhang, G.S. Li, M.J. Yu, J.M. Fan, B.Y. Li, and L.P. Li, Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries, J. Power Sources, 384(2018), p. 34. doi: 10.1016/j.jpowsour.2018.02.071
      [25]
      X.Y. Xie, L. Shang, X.Y. Xiong, R. Shi, and T.R. Zhang, Fe single-atom catalysts on MOF-5 derived carbon for efficient oxygen reduction reaction in proton exchange membrane fuel cells, Adv. Energy Mater., 12(2022), No. 3, art. No. 2102688. doi: 10.1002/aenm.202102688
      [26]
      K.A. Alzahrani, R.M. Mohamed, and A.A. Ismail, Enhanced visible light response of heterostructured Cr2O3 incorporated two-dimensional mesoporous TiO2 framework for H2 evolution, Ceram. Int., 47(2021), No. 15, p. 21293. doi: 10.1016/j.ceramint.2021.04.136
      [27]
      M.P. Araújo, M. Nunes, I.M. Rocha, M.F.R. Pereira, and C. Freire, Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction, J. Mater. Sci., 54(2019), No. 12, p. 8919. doi: 10.1007/s10853-019-03508-6
      [28]
      W.F. Mao, W. Yue, Z.J. Xu, et al., Novel Hoberman sphere design for interlaced Mn3O4@CNT architecture with atomic layer deposition-coated TiO2 overlayer as advanced anodes in Li-ion battery, ACS Appl. Mater. Interfaces, 12(2020), No. 35, p. 39282. doi: 10.1021/acsami.0c11282
      [29]
      B.F. Sun, Y.N. Yuan, H.L. Li, et al., Waste-cellulose-derived porous carbon adsorbents for methyl orange removal, Chem. Eng. J., 371(2019), p. 55. doi: 10.1016/j.cej.2019.04.031
      [30]
      R.M. Yadav, Z.Y. Li, T.Y. Zhang, et al., Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane, Adv. Mater., 34(2022), No. 2, art. No. 2105690. doi: 10.1002/adma.202105690
      [31]
      B.K. Liu, S.H. Zhan, J. Du, et al., Revealing the mechanism of sp-N doping in graphdiyne for developing site-defined metal-free catalysts, Adv. Mater., 2022, art. No. 2206450. https://doi.org/10.1002/adma.202206450
      [32]
      S. Ibraheem, S.G. Chen, J. Li, et al., Three-dimensional Fe,N-decorated carbon-supported NiFeP nanoparticles as an efficient bifunctional catalyst for rechargeable zinc–O2 batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 699. doi: 10.1021/acsami.8b16126
      [33]
      S. Li, L.L. Yu, Y.T. Shi, et al., Greatly enhanced Faradic capacities of 3D porous Mn3O4/G composites as lithium-ion anodes and supercapacitors by C–O–Mn bonding, ACS Appl. Mater. Interfaces, 11(2019), No. 10, p. 10178. doi: 10.1021/acsami.8b21063
      [34]
      H.N. Jia, J.H. Lin, Y.L. Liu, et al., Nanosized core–shell structured graphene–MnO2 nanosheet arrays as stable electrodes for superior supercapacitors, J. Mater. Chem. A, 5(2017), No. 21, p. 10678. doi: 10.1039/C7TA02627G
      [35]
      Y.N. Wang, N.Q. Fu, P. Ma, et al., Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells, Appl. Surf. Sci., 419(2017), p. 670. doi: 10.1016/j.apsusc.2017.05.057
      [36]
      L.Y. Cao, R.Y. Wang, Z.W. Xu, et al., Constructing Mn–O–C bonds in Mn3O4/super P composite for superior performance in Li-ion battery, J. Electroanal. Chem., 798(2017), p. 1. doi: 10.1016/j.jelechem.2017.05.032
      [37]
      Q. Hao, B.B. Liu, J.J. Ye, and C.X. Xu, Well encapsulated Mn3O4 octahedra in graphene nanosheets with much enhanced Li-storage performances, J. Colloid Interface Sci., 504(2017), p. 603. doi: 10.1016/j.jcis.2017.05.079
      [38]
      R. Lin, W.B. Yue, F.Z. Niu, and J. Ma, Novel strategy for the preparation of graphene-encapsulated mesoporous metal oxides with enhanced lithium storage, Electrochim. Acta, 205(2016), p. 85. doi: 10.1016/j.electacta.2016.04.095
      [39]
      M.J. Jing, H.S. Hou, Y.C. Yang, et al., Electrochemically alternating voltage induced Mn3O4/graphite powder composite with enhanced electrochemical performances for lithium-ion batteries, Electrochim. Acta, 155(2015), p. 157. doi: 10.1016/j.electacta.2014.12.170
      [40]
      M.J. Jing, J.F. Wang, H.S. Hou, et al., Carbon quantum dot coated Mn3O4 with enhanced performances for lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 32, p. 16824. doi: 10.1039/C5TA03610K
      [41]
      S.J.P. Varapragasam, C. Balasanthiran, A. Gurung, Q.Q. Qiao, R.M. Rioux, and J.D. Hoefelmeyer, Kirkendall growth of hollow Mn3O4 nanoparticles upon galvanic reaction of MnO with Cu2+ and evaluation as anode for lithium-ion batteries, J. Phys. Chem. C, 121(2017), No. 21, p. 11089. doi: 10.1021/acs.jpcc.7b01540
      [42]
      Q.G. Han, Y.L. Sheng, and X. Zhang, Preparation of a multifunctional P-CF@Mn3O4 composite as a structural anode material, New J. Chem., 45(2021), No. 35, p. 15808. doi: 10.1039/D1NJ02900B
      [43]
      X.Y. Han, Y.P. Cui, and H.W. Liu, Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries, J. Alloys Compd., 814(2020), art. No. 152348. doi: 10.1016/j.jallcom.2019.152348
      [44]
      E. Thauer, X.Z. Shi, S. Zhang, et al., Mn3O4 encapsulated in hollow carbon spheres coated by graphene layer for enhanced magnetization and lithium-ion batteries performance, Energy, 217(2021), art. No. 119399. doi: 10.1016/j.energy.2020.119399
      [45]
      C.Y. Seong, S.K. Park, Y. Bae, S. Yoo, and Y.Z. Piao, An acid-treated reduced graphene oxide/Mn3O4 nanorod nanocomposite as an enhanced anode material for lithium ion batteries, RSC Adv., 7(2017), No. 60, p. 37502. doi: 10.1039/C7RA06396B
      [46]
      M.Y. Wang, Y. Huang, N. Zhang, K. Wang, X.F. Chen, and X. Ding, A facile synthesis of controlled Mn3O4 hollow polyhedron for high-performance lithium-ion battery anodes, Chem. Eng. J., 334(2018), p. 2383. doi: 10.1016/j.cej.2017.12.017
      [47]
      I. Ullah, Y.L. Xu, X.F. Du, et al., Al2O3 coated Mn3O4@C composite for LIBs anode with enhanced cycling stability and rate performance, Solid State Ionics, 320(2018), p. 226. doi: 10.1016/j.ssi.2018.03.009
      [48]
      B.B. Wang, F. Li, X.J. Wang, G. Wang, H. Wang, and J.T. Bai, Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries, Chem. Eng. J., 364(2019), p. 57. doi: 10.1016/j.cej.2019.01.155
      [49]
      L.F. Peng, C. Yu, Z.Q. Zhang, et al., Tuning solid interfaces via varying electrolyte distributions enables high-performance solid-state batteries, Energy Environ. Mater., 2021. https://doi.org/10.1002/eem2.12308
      [50]
      L.F. Peng, H.T. Ren, J.Z. Zhang, et al., LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures, Energy Storage Mater., 43(2021), p. 53. doi: 10.1016/j.ensm.2021.08.028
      [51]
      X.Y. Wang, H. Hao, J.L. Liu, T. Huang, and A.S. Yu, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries, Electrochim. Acta, 56(2011), No. 11, p. 4065. doi: 10.1016/j.electacta.2010.12.108
      [52]
      D.W. Zeng, J.M. Yao, L. Zhang, et al., Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes, Nat. Commun., 13(2022), No. 1, art. No. 1909. doi: 10.1038/s41467-022-29596-8
      [53]
      X.Q. Liu, G.S. Li, P.X. Qian, et al., Carbon coated Li3VO4 microsphere: Ultrafast solvothermal synthesis and excellent performance as lithium-ion battery anode, J. Power Sources, 493(2021), art. No. 229680. doi: 10.1016/j.jpowsour.2021.229680
      [54]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [55]
      X. Wang, Y.G. Li, S. Wang, et al., 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability, Adv. Energy Mater., 10(2020), No. 22, art. No. 2000081. doi: 10.1002/aenm.202000081

    Catalog


    • /

      返回文章
      返回