留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  804
  • HTML全文浏览量:  318
  • PDF下载量:  20
  • 被引次数: 0
Shuqing Nie, Yu Xin, Qiuyun Wang, Chengjin Liu, Chang Miao, Limin Yu,  and Wei Xiao, Three-dimensional structural Cu6Sn5/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1171-1180. https://doi.org/10.1007/s12613-022-2591-4
Cite this article as:
Shuqing Nie, Yu Xin, Qiuyun Wang, Chengjin Liu, Chang Miao, Limin Yu,  and Wei Xiao, Three-dimensional structural Cu6Sn5/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1171-1180. https://doi.org/10.1007/s12613-022-2591-4
引用本文 PDF XML SpringerLink
研究论文

废弃印刷线路板浸出液中原位电沉积制备三维结构Cu6Sn5/CNTs合金薄膜电极

  • 通讯作者:

    肖围    E-mail: xwylyq2006@126.com

文章亮点

  • (1) 原位电沉积法制备了三维结构Cu6Sn5/CNTs薄膜电极。
  • (2) 研究了电沉积液中碳纳米管的浓度对合金薄膜电极性能的影响。
  • (3) 碳纳米管的三维网状结构可以很好地分散Cu6Sn5合金纳米颗粒。
  • 锡基材料因具有较高的理论容量而被认为是极具吸引力的锂离子电池负极材料。然而,由于合金化和去合金化过程中存在体积膨胀效应,使得电池容量迅速衰减,限制了其实际应用。本文采用废弃印刷线路板(WPCBs)浸出液作为电沉积液,通过原位电沉积法制备无粘结剂的铜锡合金/碳纳米管(Cu6Sn5/CNTs)合金薄膜电极,并探究了电沉积液中碳纳米管(CNTs)浓度对合金薄膜电极的影响。实验结果表明,当电沉积液中CNTs浓度为0.2 g·L−1时,易团聚的Cu6Sn5合金纳米颗粒均匀分布在CNTs形成的三维网状结构中,这使得Cu6Sn5/CNTs-0.2合金薄膜电极组装的电池表现出优异的循环性能和倍率性能,在100 mA·g−1的电流密度下循环50次后,放电比容量为458.35 mAh·g−1,容量保持率为82.58%;在0.1、0.2、0.5、1.0和2.0 A·g−1的电流密度下放电比容量分别为518.24、445.52、418.18、345.33和278.05 mAh·g−1。该研究不仅为锂离子电池负极材料的制备提供了参考,还为资源化利用废弃印刷线路板提供了一种经济有效的策略。
  • Research Article

    Three-dimensional structural Cu6Sn5/carbon nanotubes alloy thin-film electrodes fabricated by in situ electrodeposition from the leaching solution of waste-printed circuit boards

    + Author Affiliations
    • Tin-based materials are very attractive anodes because of their high theoretical capacity, but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying processes. Herein, the improved binder-free tin-copper intermetallic/carbon nanotubes (Cu6Sn5/CNTs) alloy thin-film electrodes are directly fabricated through efficient in situ electrodeposition from the leaching solution of treated waste-printed circuit boards (WPCBs). The characterization results show that the easily agglomerated Cu6Sn5 alloy nanoparticles are uniformly dispersed across the three-dimensional network when the CNTs concentration in the electrodeposition solution is maintained at 0.2 g·L−1. Moreover, the optimal Cu6Sn5/CNTs-0.2 alloy thin-film electrode can not only provide a decent discharge specific capacity of 458.35 mAh·g−1 after 50 cycles at 100 mA·g−1 within capacity retention of 82.58% but also deliver a relatively high reversible specific capacity of 518.24, 445.52, 418.18, 345.33, and 278.05 mAh·g−1 at step-increased current density of 0.1, 0.2, 0.5, 1.0, and 2.0 A·g−1, respectively. Therefore, the preparation process of the Cu6Sn5/CNTs-0.2 alloy thin-film electrode with improved electrochemical performance may provide a cost-effective strategy for the resource utilization of WPCBs to fabricate anode materials for lithium-ion batteries.
    • loading
    • [1]
      Q.K. Du, Q.X. Wu, H.X. Wang, et al., Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
      [2]
      J.L. Wang, C.J. Liu, Q. Wang, et al., Investigation of W6+-doped in high-nickel LiNi0.83Co0.11Mn0.06O2 cathode materials for high-performance lithium-ion batteries, J. Colloid Interface Sci., 628(2022), p. 338. doi: 10.1016/j.jcis.2022.08.085
      [3]
      J.L. Wang, C.J. Liu, G.L. Xu, et al., Strengthened the structural stability of in situ F doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries, Chem. Eng. J., 438(2022), art. No. 135537. doi: 10.1016/j.cej.2022.135537
      [4]
      Y. Xin, H.Y. Mou, C. Miao, et al., Encapsulating Sn–Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries, J. Alloys Compd., 922(2022), art. No. 166176. doi: 10.1016/j.jallcom.2022.166176
      [5]
      H.Y. Mou, Y. Xin, C. Miao, S.Q. Nie, S.X. Chen, and W. Xiao, Amorphous SnO2 nanoparticles embedded into a three-dimensional porous carbon matrix as high-performance anodes for lithium-ion batteries, Electrochim. Acta, 397(2021), art. No. 139286. doi: 10.1016/j.electacta.2021.139286
      [6]
      Y. Xu, T. Yuan, Z.H. Bian, J.H. Yang, and S.Y. Zheng, Tuning particle and phase formation of Sn/carbon nanofibers composite towards stable lithium-ion storage, J. Power Sources, 453(2020), art. No. 227467. doi: 10.1016/j.jpowsour.2019.227467
      [7]
      J.L. Wang, Y. Nie, C. Miao, Y. Tan, M.Y. Wen and W. Xiao, Enhanced electrochemical properties of Ni-rich layered cathode materials via Mg2+ and Ti4+ co-doping for lithium-ion batteries, J. Colloid Interface Sci., 601(2021), p. 853. doi: 10.1016/j.jcis.2021.05.167
      [8]
      W. Xiao, Y. Nie, C. Miao, J.L. Wang, Y. Tan and M.Y. Wen, Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery, J. Colloid Interface Sci., 607(2022), p. 1071. doi: 10.1016/j.jcis.2021.09.067
      [9]
      H.Y. Mou, S.X. Chen, W. Xiao, et al., Encapsulating homogenous ultra-fine SnO2/TiO2 particles into carbon nanofibers through electrospinning as high-performance anodes for lithium-ion batteries, Ceram. Int., 47(2021), No. 14, p. 19945. doi: 10.1016/j.ceramint.2021.03.329
      [10]
      G.L. Xu, Y.D. Gong, C. Miao, et al., Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries, Rare Met., 41(2022), No. 10, p. 3421. doi: 10.1007/s12598-022-02073-3
      [11]
      R. Li, S.Q. Nie, C. Miao, et al., Heterostructural Sn/SnO2 microcube powders coated by a nitrogen-doped carbon layer as good-performance anode materials for lithium ion batteries, J. Colloid Interface Sci., 606(2022), p. 1042. doi: 10.1016/j.jcis.2021.08.112
      [12]
      W.W. Jiang, W. Wang, L.S. Liu, et al., Sandwich-like Sn/SnO2@Graphene anode composite assembled by fortissimo penetration of γ-ray and interlamellar limitation of graphene oxide, J. Alloys Compd., 779(2019), p. 856. doi: 10.1016/j.jallcom.2018.11.296
      [13]
      S.W. Gao, N. Wang, S. Li, et al., A multi-wall Sn/SnO2 @Carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 6, p. 2465. doi: 10.1002/anie.201913170
      [14]
      V.A. Agubra, L. Zuniga, D. Flores, H. Campos, J. Villarreal, and M. Alcoutlabi, A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries, Electrochim. Acta, 224(2017), p. 608. doi: 10.1016/j.electacta.2016.12.054
      [15]
      N.N. Yao, Y. Zhang, X.H. Rao, et al., A review on the critical challenges and progress of SiOx-based anodes for lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 876. doi: 10.1007/s12613-022-2422-7
      [16]
      J. Yi, Y.L. Liu, Y. Wang, X.P. Li, S.J. Hu, and W.S. Li, Synthesis of dandelion-like TiO2 microspheres as anode materials for lithium ion batteries with enhanced rate capacity and cyclic performances, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 1058. doi: 10.1007/s12613-012-0670-7
      [17]
      J.Z. Chen, L. Yang, S.H. Fang, Z.X. Zhang, and S.I. Hirano, Facile fabrication of graphene/Cu6Sn5 nanocomposite as the high performance anode material for lithium ion batteries, Electrochim. Acta, 105(2013), p. 629. doi: 10.1016/j.electacta.2013.05.052
      [18]
      Y.L. Xing, S.B. Wang, B.Z. Fang, Y.F. Feng, and S.C. Zhang, Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries, Microporous Mesoporous Mater., 261(2018), p. 237. doi: 10.1016/j.micromeso.2016.11.036
      [19]
      Y.H. Xu, Q. Liu, Y.J. Zhu, et al., Uniform nano-Sn/C composite anodes for lithium ion batteries, Nano Lett., 13(2013), No. 2, p. 470. doi: 10.1021/nl303823k
      [20]
      L.P. Wang, G. Chen, Q.X. Shen, G.M. Li, S.Y. Guan, and B. Li, Direct electrodeposition of ionic liquid-based template-free SnCo alloy nanowires as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1027. doi: 10.1007/s12613-018-1653-0
      [21]
      Q. Wang, Y.Y. Du, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1629. doi: 10.1007/s12613-021-2249-7
      [22]
      Q.G. Han, Z. Yi, Y. Cheng, Y.M. Wu, and L.M. Wang, Simple preparation of Cu6Sn5/Sn composites as anode materials for lithium-ion batteries, RSC Adv., 6(2016), No. 19, p. 15279. doi: 10.1039/C5RA23788B
      [23]
      R.Z. Hu, G.H. Waller, Y.K. Wang, et al., Cu6Sn5@SnO2–C nanocomposite with stable core/shell structure as a high reversible anode for Li-ion batteries, Nano Energy, 18(2015), p. 232. doi: 10.1016/j.nanoen.2015.10.037
      [24]
      X.F. Tan, Q.F. Gu, D.D. Qu, et al., Electrochemically enhanced Cu6Sn5 anodes with tailored crystal orientation and ordered atomic arrangements for lithium-ion battery applications, Acta Mater., 201(2020), p. 341. doi: 10.1016/j.actamat.2020.10.011
      [25]
      X.F. Tan, S.W. Tao, L.B. Ran, R. Knibbe, and K. Nogita, Cobalt-doped Cu6Sn5 lithium-ion battery anodes with enhanced electrochemical properties, Nano Select, 3(2022), No. 8, p. 1264. doi: 10.1002/nano.202200056
      [26]
      T. Sarakonsri, T. Apirattanawan, S. Tungprasurt, and T. Tunkasiri, Solution route synthesis of dendrite Cu6Sn5 powders, anode material for lithium-ion batteries, J. Mater. Sci., 41(2006), No. 15, p. 4749. doi: 10.1007/s10853-006-0029-4
      [27]
      R.Z. Hu, M.Q. Zeng, and M. Zhu, Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition, Electrochim. Acta, 54(2009), No. 10, p. 2843. doi: 10.1016/j.electacta.2008.11.021
      [28]
      C. Zhang, Z. Wang, Y. Cui, et al., Dealloying-derived nanoporous Cu6Sn5 alloy as stable anode materials for lithium-ion batteries, Materials, 14(2021), No. 15, art. No. 4348. doi: 10.3390/ma14154348
      [29]
      X.F. Tan, S.D. McDonald, Q.F. Gu, et al., Characterisation of lithium-ion battery anodes fabricated via in situ Cu6Sn5 growth on a copper current collector, J. Power Sources, 415(2019), p. 50. doi: 10.1016/j.jpowsour.2019.01.034
      [30]
      J.Z. Chen, L. Yang, S.H. Fang, S.I. Hirano, and K. Tachibana, Three-dimensional core–shell Cu@Cu6Sn5 nanowires as the anode material for lithium ion batteries, J. Power Sources, 199(2012), p. 341. doi: 10.1016/j.jpowsour.2011.10.043
      [31]
      Y.F. Feng, C. Bai, K.D. Wu, et al., Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries, J. Alloys Compd., 843(2020), art. No. 156085. doi: 10.1016/j.jallcom.2020.156085
      [32]
      X.S. Ji, M.D. Yang, A.P. Wan, S.Q. Yu, and Z.T. Yao, Bioleaching of typical electronic waste-printed circuit boards (WPCBs): A short review, Int. J. Environ. Res. Public Health, 19(2022), No. 12, art. No. 7508. doi: 10.3390/ijerph19127508
      [33]
      K.X. Liu, S.Q. Huang, Y.X. Jin, L. Ma, W.X. Wang and J.C. Lam, A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol, J. Hazard. Mater., 433(2022), art. No. 128702. doi: 10.1016/j.jhazmat.2022.128702
      [34]
      L.M. Yu, C. Miao, S.Q. Nie, et al., Feasible preparation of Cu6Sn5 alloy thin-film anode materials for lithium-ion batteries from waste printed circuit boards by electrodeposition, Solid State Ionics, 364(2021), art. No. 115625. doi: 10.1016/j.ssi.2021.115625
      [35]
      Y. Wang, M.H. Wu, Z. Jiao, and J.Y. Lee, Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage, Chem. Mater., 21(2009), No. 14, p. 3210. doi: 10.1021/cm900702d
      [36]
      W.X. Lei, Y. Pan, Y.C. Zhou, W. Zhou, M.L. Peng, and Z.S. Ma, CNTs–Cu composite layer enhanced Sn–Cu alloy as high performance anode materials for lithium-ion batteries, RSC Adv., 4(2014), No. 7, p. 3233. doi: 10.1039/C3RA44431G
      [37]
      L. Cao, T. Huang, Q.W. Zhang, M.Y. Cui, J.J. Xu, and R.S. Xiao, Porous Si/Cu anode with high initial coulombic efficiency and volumetric capacity by comprehensive utilization of laser additive manufacturing-chemical dealloying, ACS Appl. Mater. Interfaces, 12(2020), No. 51, p. 57071. doi: 10.1021/acsami.0c16887
      [38]
      S.B. Ni, X.H. Lv, T. Li, X.L. Yang, and L.L. Zhang, Preparation of Cu2O–Cu anode for high performance Li-ion battery via an electrochemical corrosion method, Electrochim. Acta, 109(2013), p. 419. doi: 10.1016/j.electacta.2013.07.088
      [39]
      L. Baggetto, J.C. Jumas, J. Górka, C.A. Bridges, and G.M. Veith, Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using η-Cu6Sn5 thin films as a model system, Phys. Chem. Chem. Phys., 15(2013), No. 26, p. 10885. doi: 10.1039/c3cp51657a
      [40]
      X.F. Tan, W.H. Yang, K. Aso, S. Matsumura, S.D. McDonald, and K. Nogita, Evidence of copper separation in lithiated Cu6Sn5 lithium-ion battery anodes, ACS Appl. Energy Mater., 3(2020), No. 1, p. 141. doi: 10.1021/acsaem.9b02014
      [41]
      W. Choi, J.Y. Lee, and H.S. Lim, Electrochemical lithiation reactions of Cu6Sn5 and their reaction products, Electrochem. Commun., 6(2004), No. 8, p. 816. doi: 10.1016/j.elecom.2004.05.018
      [42]
      Z.Y. Wang, S.H. Luo, F. Chen, et al., Three-dimensional porous carbon nanosheet networks anchored with Cu6Sn5@carbon as a high-performance anode material for lithium ion batteries, RSC Adv., 6(2016), No. 60, p. 54718. doi: 10.1039/C6RA04778E
      [43]
      J.S. Li, X.J. Xu, Z.S. Luo, et al., Co–Sn nanocrystalline solid solutions as anode materials in lithium-ion batteries with high pseudocapacitive contribution, ChemSusChem, 12(2019), No. 7, p. 1451. doi: 10.1002/cssc.201802662
      [44]
      T. Zhang, L.J. Fu, J. Gao, Y.P. Wu, R. Holze, and H.Q. Wu, Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery, J. Power Sources, 174(2007), No. 2, p. 770. doi: 10.1016/j.jpowsour.2007.06.231
      [45]
      Y.M. Sun, X.L. Hu, W. Luo, F.F. Xia, and Y.H. Huang, Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries, Adv. Funct. Mater., 23(2013), No. 19, p. 2436. doi: 10.1002/adfm.201202623
      [46]
      F.C. Zhang, Y. Wang, W.B. Guo, P.Y. Mao, S. Rao, and P.D. Xiao, Yolk-shelled Sn@C@MnO hierarchical hybrid nanospheres for high performance lithium-ion batteries, J. Alloys Compd., 829(2020), art. No. 154579. doi: 10.1016/j.jallcom.2020.154579

    Catalog


    • /

      返回文章
      返回