留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(15)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  546
  • HTML全文浏览量:  196
  • PDF下载量:  42
  • 被引次数: 0
Arun David, Satheesh Kumar Gopal, Poovazhagan Lakshmanan, and Amith Sukumaran Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1140-1151. https://doi.org/10.1007/s12613-022-2592-3
Cite this article as:
Arun David, Satheesh Kumar Gopal, Poovazhagan Lakshmanan, and Amith Sukumaran Chenbagam, Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1140-1151. https://doi.org/10.1007/s12613-022-2592-3
引用本文 PDF XML SpringerLink
研究论文

腐蚀环境中机器人用7075铝–碳纳米管纳米复合材料的腐蚀、力学和微观结构性能研究

  • 通讯作者:

    Satheesh Kumar Gopal    E-mail: satheeshkumarg@ssn.edu.in

  • 污水清洁的管道内机器人的引入为研究人员提供了管道检查的新选择,如泄漏、裂缝、气体和腐蚀检测,这些都是当前工业场景中常见的标准应用。在所有这些情况下经常被忽视的问题是机器人固有的抗腐蚀能力。基于旋转超声和机械搅拌(RUMS)的铸造方法,讨论了加入不同碳纳米管质量分数(0、0.5wt%、1wt%和1.5wt%)的7075铝的机械、微观结构和腐蚀性能,同时不会影响机器人的机械性能。结果表明,1wt%铝-碳纳米管纳米复合材料表现出良好的腐蚀和机械性能,达到了机器人对污水环境的要求。
  • Research Article

    Corrosion, mechanical and microstructural properties of aluminum 7075–carbon nanotube nanocomposites for robots in corrosive environments

    + Author Affiliations
    • The introduction of in-pipe robots for sewage cleaning provides researchers with new options for pipe inspection, such as leakage, crack, gas, and corrosion detection, which are standard applications common in the current industrial scenario. The question that is frequently overlooked in all these cases is the inherent resistance of the robots to corrosion. The mechanical, microstructural, and corrosion properties of aluminum 7075 incorporated with various weight percentages (0, 0.5wt%, 1wt%, and 1.5wt%) of carbon nanotubes (CNTs) are discussed. It is fabricated using a rotational ultrasonication with mechanical stirring (RUMS)-based casting method for improved corrosion resistance without compromising the mechanical properties of the robot. 1wt% CNTs–aluminum nanocomposite shows good corrosion and mechanical properties, meeting the requirements imposed by the sewage environment of the robot.
    • loading
    • Supplementary Information-s12613-022-2592-3.docx
    • [1]
      R.K. Bhushan and S. Kumar, Influence of SiC particles distribution and their weight percentage on 7075 Al alloy, J. Mater. Eng. Perform., 20(2011), No. 2, p. 317. doi: 10.1007/s11665-010-9681-6
      [2]
      A. Kalkanlı and S. Yılmaz, Synthesis and characterization of aluminum alloy 7075 reinforced with silicon carbide particulates, Mater. Des., 29(2008), No. 4, p. 775. doi: 10.1016/j.matdes.2007.01.007
      [3]
      S.M. Choi and H. Awaji, Nanocomposites–A new material design concept, Sci. Technol. Adv. Mater., 6(2005), No. 1, p. 2. doi: 10.1016/j.stam.2004.06.002
      [4]
      S. Gopalakannan and T. Senthilvelan, Synthesis and characterisation of Al7075 reinforced with SiC and B4C nano particles fabricated by ultrasonic cavitation method, J. Sci. Ind. Res., 74(2015), No. 5, p. 281.
      [5]
      M. Imran and A.R.A. Khan, Characterization of Al-7075 metal matrix composites: A review, J. Mater. Res. Technol., 8(2019), No. 3, p. 3347. doi: 10.1016/j.jmrt.2017.10.012
      [6]
      A. Baradeswaran and A.E. Perumal, Study on mechanical and wear properties of Al7075/Al2O3/graphite hybrid composites, Composites Part B, 56(2014), p. 464. doi: 10.1016/j.compositesb.2013.08.013
      [7]
      A. Baradeswaran and A.E. Perumal, Wear and mechanical characteristics of Al7075/graphite composites, Composites Part B, 56(2014), p. 472. doi: 10.1016/j.compositesb.2013.08.073
      [8]
      A.I. Khdair and A. Fathy, Enhanced strength and ductility of Al–SiC nanocomposites synthesized by accumulative roll bonding, J. Mater. Res. Technol., 9(2020), No. 1, p. 478. doi: 10.1016/j.jmrt.2019.10.077
      [9]
      G.B.V. Kumar, C.S.P. Rao, N. Selvaraj, and M.S. Bhagyashekar, Studies on Al6061–SiC and Al7075–Al2O3 metal matrix composites, J. Miner. Mater. Charact. Eng., 9(2010), No. 1, p. 43.
      [10]
      M.H. Jokhio, M.I. Panhwer, and M.A. Unar, Manufacturing of aluminum composite material using stir casting process, Mehran Uni. Res. J. Eng. Technol., 30(2016), No. 1, p. 53.
      [11]
      A. Pardo, M.C. Merino, S. Merino, F. Viejo, M. Carboneras, and R. Arrabal, Influence of reinforcement proportion and matrix composition on pitting corrosion behaviour of cast aluminium matrix composites (A3xx.x/SiCp), Corros. Sci., 47(2005), No. 7, p. 1750. doi: 10.1016/j.corsci.2004.08.010
      [12]
      G.M. Pinto, N. Nayak, and A. Nityananda Shetty, Corrosion behaviour of 6061 Al–15vol. Pct. SiC composite and its base alloy in a mixture of 1 : 1 hydrochloric and sulphuric acid medium, Int. J. Electrochem. Sci., 4(2009), No. 10, p. 1452.
      [13]
      F. Toptan, A.C. Alves, I. Kerti, E. Ariza, and L.A. Rocha, Corrosion and tribocorrosion behaviour of Al–Si–Cu–Mg alloy and its composites reinforced with B4C particles in 0.05 M NaCl solution, Wear, 306(2013), No. 1-2, p. 27. doi: 10.1016/j.wear.2013.06.026
      [14]
      S. Candan, An investigation on corrosion behaviour of pressure infiltrated Al–Mg alloy/SiCp composites, Corros. Sci., 51(2009), No. 6, p. 1392. doi: 10.1016/j.corsci.2009.03.025
      [15]
      J.F Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen, and Z.Q. Zheng, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments, Trans. Nonferrous Met. Soc. China, 18(2008), No. 4, p. 755. doi: 10.1016/S1003-6326(08)60130-2
      [16]
      P. Liu, S.E. Yang, Y.S. Chen, et al., Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects, Ceram. Int., 46(2020), No. 12, p. 19655. doi: 10.1016/j.ceramint.2020.05.067
      [17]
      Y. Zhang, Q. Wang, G. Chen, and C.S. Ramachandran, Mechanical, tribological and corrosion physiognomies of CNT–Al metal matrix composite (MMC) coatings deposited by cold gas dynamic spray (CGDS) process, Surf. Coat. Technol., 403(2020), art. No. 126380. doi: 10.1016/j.surfcoat.2020.126380
      [18]
      B. Chen, K. Kondoh, J. S. Li, and M. Qian, Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in situ alumina nanoparticles, Composites Part B, 183(2020), art. No. 107691. doi: 10.1016/j.compositesb.2019.107691
      [19]
      T. Laha, A. Agarwal, T. McKechnie, and S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A, 381(2004), No. 1-2, p. 249. doi: 10.1016/j.msea.2004.04.014
      [20]
      A. Rutkowska, T.M. Bawazeer, J.V. Macpherson, and P.R. Unwin, Visualisation of electrochemical processes at optically transparent carbon nanotube ultramicroelectrodes (OT–CNT–UMEs), Phys. Chem. Chem. Phys., 13(2011), No. 12, p. 5223. doi: 10.1039/c0cp02804e
      [21]
      C.F. Deng, X.X. Zhang, D.Z. Wang, Q. Lin, and A.B. Li, Preparation and characterization of carbon nanotubes/aluminum matrix composites, Mater. Lett., 61(2007), No. 8-9, p. 1725. doi: 10.1016/j.matlet.2006.07.119
      [22]
      C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites, Mater. Sci. Eng. A, 444(2007), No. 1-2, p. 138. doi: 10.1016/j.msea.2006.08.057
      [23]
      S.I. Ghazanlou and B. Eghbali, Fabrication and characterization of GNPs and CNTs reinforced Al7075 matrix composites through the stir casting process, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1204. doi: 10.1007/s12613-020-2101-5
      [24]
      I. Sridhar and K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites, J. Mater. Sci., 44(2009), No. 7, p. 1750. doi: 10.1007/s10853-009-3290-5
      [25]
      C. Kannan and R. Ramanujam, Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting, J. Adv. Res., 8(2017), No. 4, p. 309. doi: 10.1016/j.jare.2017.02.005
      [26]
      T. Laha, Y. Chen, D. Lahiri, and A. Agarwal, Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming, Compos. A Appl. Sci. Manuf., 40(2009), No. 5, p. 589. doi: 10.1016/j.compositesa.2009.02.007
      [27]
      V.V. Shanbhag, N.N. Yalamoori, S. Karthikeyan, R. Ramanujam, and K. Venkatesan, Fabrication, surface morphology and corrosion investigation of Al7075–Al2O3 matrix composite in sea water and industrial environment, Procedia Eng., 97(2014), p. 607. doi: 10.1016/j.proeng.2014.12.289
      [28]
      S.C. Amith and P. Lakshmanan, Effects of simultaneous rotational ultrasonication and vortex-induced casting technique on particle distribution and grain refinement in AA7075/h-BN nanocomposites, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 236(2022), No. 8, p. 1648.
      [29]
      B. Abbasipour, B. Niroumand, S.M. Monir Vaghefi, and M. Abedi, Tribological behavior of A356–CNT nanocomposites fabricated by various casting techniques, Trans. Nonferrous Met. Soc. China, 29(2019), No. 10, p. 1993. doi: 10.1016/S1003-6326(19)65107-1
      [30]
      H. Liao, Y. Sun, and G. Sun, Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11.6% Si alloys modified with strontium, Mater. Sci. Eng. A, 335(2002), No. 1-2, p. 62. doi: 10.1016/S0921-5093(01)01949-9
      [31]
      G. Anne, M.R. Ramesh, S.B. Arya, and S. Sahu, Microstructure evolution and mechanical and corrosion behavior of accumulative roll bonded Mg–2%Zn/Al-7075 multilayered composite, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1726. doi: 10.1007/s11665-017-2576-z
      [32]
      A.P. Mouritz, Introduction to Aerospace Materials, Amsterdam: Elsevier, 2012.
      [33]
      K. Mohan, J.A. Suresh, P. Ramu, and R. Jayaganthan, Microstructure and mechanical behavior of Al7075–T6 subjected to shallow cryogenic treatment, J. Mater. Eng. Perform., 25(2016), No. 6, p. 2185. doi: 10.1007/s11665-016-2052-1
      [34]
      N. Yazdian, F. Karimzadeh, and M. Tavoosi, Microstructural evolution of nanostructure 7075 aluminum alloy during isothermal annealing, J. Alloys Compd., 493(2010), No. 1-2, p. 137. doi: 10.1016/j.jallcom.2009.12.144
      [35]
      H. Hashim, M.S. Salleh, M.Z. Omar, and A.B. Sulong, Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method, J. Mater. Res. Technol., 8(2019), No. 2, p. 2223. doi: 10.1016/j.jmrt.2019.02.008
      [36]
      F. Barati and M. Esfandiari, The effect of multi-walled carbon nanotubes, as the reinforcement phase, on the hardness and bending strength of aluminum alloy 7075, J. Stress Anal., 6(2021), No. 1, p. 61.
      [37]
      H. Puga, V.H. Carneiro, J. Barbosa, and D. Soares, Effect of grain and secondary phase morphologies in the mechanical and damping behavior of Al7075 alloys, Met. Mater. Int., 22(2016), No. 5, p. 863. doi: 10.1007/s12540-016-6073-y
      [38]
      A. Kumar, K. Pal, and S. Mula, Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075–2% SiC micro- and nanocomposites by friction stir processing, J. Manuf. Process., 30(2017), p. 1. doi: 10.1016/j.jmapro.2017.09.005
      [39]
      R.A. Manikandan and T.V. Arjunan, Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite, Composites Part B, 183(2020), art. No. 107668. doi: 10.1016/j.compositesb.2019.107668
      [40]
      P. Samal, P.R. Vundavilli, A. Meher, and M.M. Mahapatra, Reinforcing effect of multi-walled carbon nanotubes on microstructure and mechanical behavior of AA5052 composites assisted by in situ TiC particles, Ceram. Int., 48(2022), No. 6, p. 8245. doi: 10.1016/j.ceramint.2021.12.029
      [41]
      X.F. Wang, M.X. Guo, C.Q. Ma, J.B. Chen, J.S. Zhang, and L.Z. Zhuang, Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 957. doi: 10.1007/s12613-018-1645-0
      [42]
      S. Suresh, G.H Gowd, and M.L. Deva Kumar, Mechanical properties of AA 7075/Al2O3/SiC nano-metal matrix composites by stir-casting method, J. Inst. Eng. India Ser. D, 100(2019), No. 1, p. 43. doi: 10.1007/s40033-019-00178-1
      [43]
      A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Mater., 107(2016), p. 424. doi: 10.1016/j.actamat.2015.12.034
      [44]
      H.A Deore, J. Mishra, A.G. Rao, H. Mehtani, and V.D. Hiwarkar, Effect of filler material and post process ageing treatment on microstructure, mechanical properties and wear behaviour of friction stir processed AA 7075 surface composites, Surf. Coat. Technol., 374(2019), p. 52. doi: 10.1016/j.surfcoat.2019.05.048
      [45]
      B. Zhou, B. Liu, S.G. Zhang, R. Lin, Y. Jiang, and X.Y. Lan, Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties, J. Alloys Compd., 879(2021), art. No. 160407. doi: 10.1016/j.jallcom.2021.160407
      [46]
      F. Andreatta, H. Terryn, and J.H.W. De Wit, Effect of solution heat treatment on galvanic coupling between intermetallics and matrix in AA7075–T6, Corros. Sci., 45(2003), No. 8, p. 1733. doi: 10.1016/S0010-938X(03)00004-0
      [47]
      M. Navaser and M. Atapour, Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy, J. Mater. Sci. Technol., 33(2017), No. 2, p. 155. doi: 10.1016/j.jmst.2016.07.008
      [48]
      J. Halambek, M.C. Bubalo, I.R. Redovniković, and K. Berković, Corrosion behaviour of aluminium and AA5754 alloy in 1% acetic acid solution in presence of laurel oil, Int. J. Electrochem. Sci, 9(2014), No. 10, p. 5496.
      [49]
      K.S. Ghosh, S. Mukhopadhyay, B. Konar, and B. Mishra, Study of aging and electrochemical behaviour of Al–Li–Cu–Mg alloys, Mater. Corros., 64(2013), No. 10, p. 890. doi: 10.1002/maco.201106409

    Catalog


    • /

      返回文章
      返回