留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(5)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  561
  • HTML全文浏览量:  200
  • PDF下载量:  20
  • 被引次数: 0
Pengpeng Bai, Shaowei Li, Jie Cheng, Xiangli Wen, Shuqi Zheng, Changfeng Chen, and Yu Tian, Improvement of hydrogen permeation barrier performance by iron sulphide surface films, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1792-1800. https://doi.org/10.1007/s12613-022-2593-2
Cite this article as:
Pengpeng Bai, Shaowei Li, Jie Cheng, Xiangli Wen, Shuqi Zheng, Changfeng Chen, and Yu Tian, Improvement of hydrogen permeation barrier performance by iron sulphide surface films, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1792-1800. https://doi.org/10.1007/s12613-022-2593-2
引用本文 PDF XML SpringerLink
研究论文

硫铁化合物膜对氢渗透的阻隔性能研究



  • 通讯作者:

    郑树启    E-mail: zhengsq09@163.com

    田煜    E-mail: tianyu@tsinghua.edu.cn

文章亮点

  • (1) 系统地研究了不同晶型Fe–S腐蚀产物膜对氢渗透的阻隔作用
  • (2) 提出了Fe–S腐蚀产物对氢渗透的阻隔作用是由于半导体类型从p型变为n型而导致的。
  • 在H2S腐蚀过程中,具有六方晶体结构的Fe–S腐蚀产物具有潜在的氢渗透阻隔作用。本文通过腐蚀和CVD沉积的方法在碳钢上制备了Fe–S化合物薄膜,使用电化学氢渗透方法测试了不同晶型Fe–S化合物膜对氢渗透的阻隔作用。并利用热电测量系统测试了Fe–S化合物膜在相变过程中的电阻率。结果表明,作为p型半导体,马基诺矿对氢渗透没有明显的阻隔作用,而作为n型半导体,磁黄铁矿和黄铁矿对氢渗透有明显的阻隔效应。当碳钢表面沉积磁黄铁矿和黄铁矿的薄膜时,氢渗透电流值低于裸钢一个数量级。腐蚀产物在从马基诺矿到磁黄铁矿的转变过程中,半导体特性从p型变为n型,在从黄铁矿到磁黄铁矿转变过程中始终保持n型。因此,有两个因素会影响腐蚀产物的氢渗透。首先,腐蚀产物层的致密结构防止了钢和硫化氢水溶液之间的接触。其次,腐蚀产物的半导体特性的差异导致界面处离子和空位的选择性吸附和迁移发生变化,反应是由Fe2+在薄膜之间的迁移速率控制的,H+更倾向于在n型半导体界面与电子结合,形成氢并逸出,从而减少渗透到金属中的氢总量。
  • Research Article

    Improvement of hydrogen permeation barrier performance by iron sulphide surface films

    + Author Affiliations
    • Fe–S compounds with hexagonal crystal structure are potential hydrogen permeation barrier during H2S corrosion. Hexagonal system Fe–S films were prepared on carbon steel through corrosion and CVD deposition, and the barrier effect of different Fe–S films on hydrogen permeation was tested using electrochemical hydrogen permeation method. After that, the electrical properties of Fe–S compound during phase transformation were measured using thermoelectric measurement system. Results show that the mackinawite has no obvious barrier effect on hydrogen penetration, as a p-type semiconductor, and pyrrhotite (including troilite) has obvious barrier effect on hydrogen penetration, as an n-type semiconductor. Hydrogen permeation tests showed peak permeation performance when the surface was deposited with a continuous film of pyrrhotite (Fe1–xS) and troilite. The FeS compounds suppressed hydrogen permeation by the promotion of the hydrogen evolution reaction, semiconducting inversion from p- to n-type, and the migration of ions at the interface.
    • loading
    • Supplementary Information-s12613-022-2593-2.docx
    • [1]
      B.L. Zhang, Q.S. Zhu, C. Xu, et al., Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels, Nat. Commun., 13(2022), No. 1, art. No. 3858. doi: 10.1038/s41467-022-31665-x
      [2]
      P.P. Bai, J. Zhou, B.W. Luo, S.Q. Zheng, P.Y. Wang, and Y. Tian, Hydrogen embrittlement of X80 pipeline steel in H2S environment: Effect of hydrogen charging time, hydrogen-trapped state and hydrogen charging–releasing–recharging cycles, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 63. doi: 10.1007/s12613-019-1870-1
      [3]
      A. Nagao, K. Hayashi, K. Oi, and S. Mitao, Effect of uniform distribution of fine cementite on hydrogen embrittlement of low carbon martensitic steel plates, ISIJ Int., 52(2012), No. 2, p. 213. doi: 10.2355/isijinternational.52.213
      [4]
      R. Balasubramaniam, On the role of chromium in minimizing room temperature hydrogen embrittlement in iron aluminides, Scripta Mater., 34(1996), No. 1, p. 127. doi: 10.1016/1359-6462(95)00495-5
      [5]
      A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, and I.M. Robertson, The effect of nanosized (Ti, Mo)C precipitates on hydrogen embrittlement of tempered lath martensitic steel, Acta Mater., 74(2014), p. 244. doi: 10.1016/j.actamat.2014.04.051
      [6]
      H.J. Seo, J.N. Kim, J.W. Jo, and C.S. Lee, Effect of tempering duration on hydrogen embrittlement of vanadium-added tempered martensitic steel, Int. J. Hydrogen Energy, 46(2021), No. 37, p. 19670. doi: 10.1016/j.ijhydene.2021.03.109
      [7]
      J. Yoo, M.C. Jo, D.W. Kim, et al., Effects of Cu addition on resistance to hydrogen embrittlement in 1 GPa-grade duplex lightweight steels, Acta Mater., 196(2020), p. 370. doi: 10.1016/j.actamat.2020.06.051
      [8]
      L.C. Liu, H.R. Gong, S.F. Zhou, and X. Gong, Adsorption, diffusion, and permeation of hydrogen at PdCu surfaces, J. Membr. Sci., 588(2019), art. No. 117206. doi: 10.1016/j.memsci.2019.117206
      [9]
      M. Nagumo and K. Takai, The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: Overview, Acta Mater., 165(2019), p. 722. doi: 10.1016/j.actamat.2018.12.013
      [10]
      R.J. Shi, Z.D. Wang, L.J. Qiao, and X.L. Pang, Effect of in-situ nanoparticles on the mechanical properties and hydrogen embrittlement of high-strength steel, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 644. doi: 10.1007/s12613-020-2157-2
      [11]
      Y.Y. Wu, S.M. Wang, S. Li, et al., Deuterium permeation properties of Er2O3/Cr2O3 composite coating prepared by MOCVD on 316L stainless steel, Fusion Eng. Des., 113(2016), p. 205. doi: 10.1016/j.fusengdes.2016.09.007
      [12]
      S.K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement in different materials: A review, Int. J. Hydrogen Energy, 43(2018), No. 46, p. 21603. doi: 10.1016/j.ijhydene.2018.09.201
      [13]
      M.Y Zhang, R.Y. Zhao, Y.H. Ling, et al., Preparation of Cr2O3/Al2O3 bipolar oxides as hydrogen permeation barriers by selective oxide removal on SS and atomic layer deposition, Int. J. Hydrogen Energy, 44(2019), No. 23, p. 12277. doi: 10.1016/j.ijhydene.2019.03.086
      [14]
      S.K. Dwivedi and M. Vishwakarma, Hydrogen embrittlement prevention in high strength steels by application of various surface coatings – A review, [in] Advances in Manufacturing and Industrial Engineering: Select Proceedings of ICAPIE 2019, Singapore, 2021, p. 673.
      [15]
      A. Kahyarian, B. Brown, and S.Nešić, The unified mechanism of corrosion in aqueous weak acids solutions: A review of the recent developments in mechanistic understandings of mild steel corrosion in the presence of carboxylic acids, carbon dioxide, and hydrogen sulfide, Corrosion, 76(2020), No. 3, p. 268. doi: 10.5006/3474
      [16]
      M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 271. doi: 10.1007/s12613-020-2156-3
      [17]
      J.L. Crolet, Mechanisms of uniform corrosion under corrosion deposits, J. Mater. Sci., 28(1993), No. 10, p. 2589. doi: 10.1007/BF00356194
      [18]
      S.J. Gao, P. Jin, B. Brown, D. Young, S. Nešić, and M. Singer, Effect of high temperature on the aqueous H2S corrosion of mild steel, Corrosion, 73(2017), No. 10, p. 1188. doi: 10.5006/2523
      [19]
      S.Q. Zheng, C.S. Zhou, X.Y. Chen, L. Zhang, J.Y. Zheng, and Y.Z. Zhao, Dependence of the abnormal protective property on the corrosion product film formed on H2S-adjacent API-X52 pipeline steel, Int. J. Hydrogen Energy, 39(2014), No. 25, p. 13919. doi: 10.1016/j.ijhydene.2014.04.077
      [20]
      X.L. Wen, P.P. Bai, B.W. Luo, S.Q. Zheng, and C.F. Chen, Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment, Corros. Sci., 139(2018), p. 124. doi: 10.1016/j.corsci.2018.05.002
      [21]
      T. Omura, T. Kobayashi, and M. Ueda, Ssc resistance of high strength low alloy steel octg in high pressure H2S environments, [in] NACE International Corrosion Conference Series, 2009.
      [22]
      C.S. Zhou, S.Q. Zheng, C.F. Chen, and G.W. Lu, The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel, Corros. Sci., 67(2013), p. 184. doi: 10.1016/j.corsci.2012.10.016
      [23]
      C.S. Zhou, X.Y. Chen, Z. Wang, S.Q. Zheng, X. Li, and L. Zhang, Effects of environmental conditions on hydrogen permeation of X52 pipeline steel exposed to high H2S-containing solutions, Corros. Sci., 89(2014), p. 30. doi: 10.1016/j.corsci.2014.07.061
      [24]
      D. Rickard and G.W. Luther, Chemistry of iron sulfides, Chem. Rev., 107(2007), No. 2, p. 514. doi: 10.1021/cr0503658
      [25]
      P.P. Bai, S.Q. Zheng, C.F. Chen, and H. Zhao, Investigation of the iron–sulfide phase transformation in nanoscale, Cryst. Growth Des., 14(2014), No. 9, p. 4295. doi: 10.1021/cg500333p
      [26]
      F.X. Shi, L. Zhang, J.W. Yang, M.X. Lu, J.H. Ding, and H. Li, Polymorphous FeS corrosion products of pipeline steel under highly sour conditions, Corros. Sci., 102(2016), p. 103. doi: 10.1016/j.corsci.2015.09.024
      [27]
      J.B. Sardisco, W.B. Wright, and E.C. Greco, Corrosion of iron in on H2S–CO2–H2O system: Corrosion film properties on pure iron, Corrosion, 19(1963), No. 10, p. 354. doi: 10.5006/0010-9312-19.10.354
      [28]
      H.Y. Ma, X.L. Cheng, G.Q. Li, et al., The influence of hydrogen sulfide on corrosion of iron under different conditions, Corros. Sci., 42(2000), No. 10, p. 1669. doi: 10.1016/S0010-938X(00)00003-2
      [29]
      J.W. Yang, L. Zhang, L.N. Xu, and M. Lu, Influence of H2S and CO2 corrosion scales on hydrogen permeation in X65 steel, [in] NACE International Corrosion Conference Series, 2008.
      [30]
      Y.M. Qi, H.Y. Luo, S.Q. Zheng, C.F. Chen, Z.G. Lv, and M.X. Xiong, Comparison of tensile and impact behavior of carbon steel in H2S environments, Mater. Des., 58(2014), p. 234. doi: 10.1016/j.matdes.2014.01.065
      [31]
      A. Krishnamoorthy, Modeling of Mechanisms Affecting the Growth and Breakdown of Iron Sulfide Films [Dissertation], Massachusetts Institute of Technology, Cambridge, 2016.
      [32]
      P.P. Bai, H. Zhao, S.Q. Zheng, and C.F. Chen, Initiation and developmental stages of steel corrosion in wet H2S environments, Corros. Sci., 93(2015), p. 109. doi: 10.1016/j.corsci.2015.01.024
      [33]
      P.P. Bai, S.Q. Zheng, and C.F. Chen, Electrochemical characteristics of the early corrosion stages of API X52 steel exposed to H2S environments, Mater. Chem. Phys., 149-150(2015), p. 295. doi: 10.1016/j.matchemphys.2014.10.020
      [34]
      P.P. Bai, S.Q. Zheng, H. Zhao, Y. Ding, J. Wu, and C.F. Chen, Investigations of the diverse corrosion products on steel in a hydrogen sulfide environment, Corros. Sci., 87(2014), p. 397. doi: 10.1016/j.corsci.2014.06.048
      [35]
      Y.M. Qi, H.Y. Luo, S.Q. Zheng, C.F. Chen, and D.N. Wang, Effect of immersion time on the hydrogen content and tensile properties of A350LF2 steel exposed to hydrogen sulphide environments, Corros. Sci., 69(2013), p. 164. doi: 10.1016/j.corsci.2012.11.038
      [36]
      M.V. Devanathan, Z. Stachurski, and W. Beck, A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths, J. Electrochem. Soc., 110(2019), No. 8, p. 886.
      [37]
      P.P. Bai, Y.X. Liang, S.Q. Zheng, and C.F. Chen, Effect of amorphous FeS semiconductor on the corrosion behavior of pipe steel in H2S-containing environments, Ind. Eng. Chem. Res., 55(2016), No. 41, p. 10932. doi: 10.1021/acs.iecr.6b03000
      [38]
      W.K. Kim, S.U. Koh, B.Y. Yang, and K.Y. Kim, Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels, Corros. Sci., 50(2008), No. 12, p. 3336. doi: 10.1016/j.corsci.2008.09.030
      [39]
      J.S. Smith and J.D.A. Miller, Nature of sulphides and their corrosive effect on ferrous metals: A review, Br. Corros. J., 10(1975), No. 3, p. 136. doi: 10.1179/000705975798320701
      [40]
      R.J. Jiang, C.F. Chen, and S.Q. Zheng, The non-linear fitting method to analyze the measured M–S plots of bipolar passive films, Electrochim. Acta, 55(2010), No. 7, p. 2498. doi: 10.1016/j.electacta.2009.11.093
      [41]
      A.R. Lennie, S.A.T. Redfern, P.E. Champness, C.P. Stoddart, P.F. Schofield, and D.J. Vaughan, Transformation of mackinawite to greigite; an in situ X-ray powder diffraction and transmission electron microscope study, Am. Mineral., 82(1997), No. 3-4, p. 302. doi: 10.2138/am-1997-3-408
      [42]
      A.R. Lennie, S.A.T. Redfern, P.F. Schofield, and D.J. Vaughan, Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS, Mineral. Mag., 59(1995), No. 397, p. 677. doi: 10.1180/minmag.1995.059.397.10
      [43]
      A.R. Lennie and D.J. Vaughan, Spectroscopic Studies of Iron Sulfide Formation and Phase Relations at Low Temperatures, Houston, The Geochemical Society, (1996)
      [44]
      A.R. Lennie, K.E.R. England, and D.J. Vaughan, Transformation of synthetic mackinawite to hexagonal pyrrhotite; a kinetic study, Am. Mineral., 80(1995), No. 9-10, p. 960. doi: 10.2138/am-1995-9-1012
      [45]
      Y.P. Varshni, Temperature dependence of the energy gap in semiconductors, Physica, 34(1967), No. 1, p. 149. doi: 10.1016/0031-8914(67)90062-6
      [46]
      T. Zhou, L.J. Wang, S.Q. Zheng, et al., Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT, Nano Energy, 49(2018), p. 221. doi: 10.1016/j.nanoen.2018.04.035
      [47]
      B.W. Luo, P.P. Bai, T. An, et al., Vapor-deposited iron sulfide films as a novel hydrogen permeation barrier for steel: Deposition condition, defect effect, and hydrogen diffusion mechanism, Int. J. Hydrogen Energy, 43(2018), No. 32, p. 15564. doi: 10.1016/j.ijhydene.2018.06.042
      [48]
      S.K. Bhargava, A. Garg, and N.D. Subasinghe, In situ high-temperature phase transformation studies on pyrite, Fuel, 88(2009), No. 6, p. 988. doi: 10.1016/j.fuel.2008.12.005
      [49]
      P. Toulmin III and P.B. Barton Jr, A thermodynamic study of pyrite and pyrrhotite, Geochim. Cosmochim. Acta, 28(1964), No. 5, p. 641. doi: 10.1016/0016-7037(64)90083-3
      [50]
      M.C.L. de Oliveira, V.S.M. Pereira, O.V. Correa, N.B. de Lima, and R.A. Antunes, Correlation between the corrosion resistance and the semiconducting properties of the oxide film formed on AZ91D alloy after solution treatment, Corros. Sci., 69(2013), p. 311. doi: 10.1016/j.corsci.2012.12.015
      [51]
      C.Q. Ren, W.G. Wang, X. Jin, L. Liu, and T.H. Shi, Physicochemical performance of FeCO3 films influenced by anions, RSC Adv., 5(2015), No. 26, p. 20302. doi: 10.1039/C4RA14313B
      [52]
      G.A. Zhang, Y. Zeng, X.P. Guo, F. Jiang, D.Y. Shi, and Z.Y. Chen, Electrochemical corrosion behavior of carbon steel under dynamic high pressure H2S/CO2 environment, Corros. Sci., 65(2012), p. 37. doi: 10.1016/j.corsci.2012.08.007
      [53]
      X.L. Cheng, H.Y. Ma, S.H. Chen, X. Chen, and Z.M. Yao, Corrosion of nickel in acid solutions with hydrogen sulphide, Corros. Sci., 42(2000), No. 2, p. 299. doi: 10.1016/S0010-938X(99)00092-X
      [54]
      M.A. Lucio-Garcia, J.G. Gonzalez-Rodriguez, M. Casales, et al., Effect of heat treatment on H2S corrosion of a micro-alloyed C–Mn steel, Corros. Sci., 51(2009), No. 10, p. 2380. doi: 10.1016/j.corsci.2009.06.022
      [55]
      D.D. MacDonald, The point defect model for the passive state, J. Electrochem. Soc., 139(1992), No. 12, p. 3434. doi: 10.1149/1.2069096
      [56]
      D.D. Macdonald, The history of the point defect model for the passive state: A brief review of film growth aspects, Electrochim. Acta, 56(2011), No. 4, p. 1761. doi: 10.1016/j.electacta.2010.11.005
      [57]
      D.D. MacDonald, Passivity–the key to our metals-based civilization, Pure Appl. Chem., 71(1999), No. 6, p. 951. doi: 10.1351/pac199971060951

    Catalog


    • /

      返回文章
      返回