留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(14)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  557
  • HTML全文浏览量:  161
  • PDF下载量:  67
  • 被引次数: 0
Dong Wang, Chen Ma, Jinyu Liu, Weidong Li, Wei Shang, Ning Peng, and Yuqing Wen, Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1128-1139. https://doi.org/10.1007/s12613-023-2596-7
Cite this article as:
Dong Wang, Chen Ma, Jinyu Liu, Weidong Li, Wei Shang, Ning Peng, and Yuqing Wen, Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1128-1139. https://doi.org/10.1007/s12613-023-2596-7
引用本文 PDF XML SpringerLink
研究论文

镁合金表面微弧氧化/氧化石墨烯/硬脂酸超疏水复合涂层的耐蚀和抗污性能研究

文章亮点

  • (1) 在镁合金AZ91D上合成了具有花瓣状球形结构的MAO/GO/SA超疏水复合涂层。
  • (2) MAO/GO/SA复合涂层表现出优异的超疏水性能、疏水稳定性和自清洁性能。
  • (3) 与镁合金基体相比,MAO/GO/SA复合涂层的腐蚀电流密度减少了三个数量级,同时阻抗也增加了三个数量级,耐盐雾腐蚀时间达192 h。
  • 镁合金因其低密度、高强度重量比和尺寸稳定性等优点,在汽车、医疗和电子通信领域具有很高的应用价值和广泛的应用前景。然而,镁合金在腐蚀环境中较差的耐腐蚀性在很大程度上限制了其广泛应用。因此,本文旨在通过微弧氧化技术、电沉积技术和自组装技术相结合,在镁合金AZ91D上制备一种具有优异耐腐蚀性的微弧氧化/氧化石墨烯/硬脂酸(MAO/GO/SA)超疏水复合涂层。通过扫描电子显微镜、X射线衍射、能量色散光谱和拉曼光谱对涂层的组成和微结构进行了表征。利用极化曲线、电化学阻抗谱和盐雾实验,评估了MAO/GO/SA复合涂层的防腐蚀性能。研究结果表明,所制备的超疏水复合涂层具有花瓣状球形结构,其接触角达到了159.53° ± 2°,具有优越的超疏水性和抗污性能。而且,MAO/GO/SA复合涂层也表现出较好的耐腐蚀性能,其腐蚀电流密度比镁合金基体低三个数量级,阻抗大三个数量级,耐盐雾腐蚀时间达192 h。
  • Research Article

    Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys

    + Author Affiliations
    • Magnesium (Mg) alloys, the lightest metal construction material used in industry, play a vital role in future development. However, the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications. Therefore, a micro-arc oxidation/graphene oxide/stearic acid (MAO/GO/SA) superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation (MAO) technology, electrodeposition technique, and self-assembly technology. The composition and microstructure of the coating were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy, and Raman spectroscopy. The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization, electrochemical impedance spectroscopy tests, and salt spray tests. The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity, and it attained a contact angle of 159.53° ± 2°. The MAO/GO/SA composite coating exhibited high resistance to corrosion, according to electrochemical and salt spray tests.
    • loading
    • [1]
      M. Yin, L.F. Hou, Z.W. Wang, et al., Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy, Corros. Sci., 184(2021), art. No. 109378. doi: 10.1016/j.corsci.2021.109378
      [2]
      M. Esmaily, J.E. Svensson, S. Fajardo, et al., Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89(2017), p. 92. doi: 10.1016/j.pmatsci.2017.04.011
      [3]
      S.D. Wang, X.S. Ye, H.F. Zhang, et al., Superhydrophobic silane/fluorinated Attapulgite@SiO2 composite coatings on magnesium alloy for corrosion protection, ChemistrySelect, 5(2020), No. 33, p. 10329. doi: 10.1002/slct.202001802
      [4]
      Z.R. Zeng, N. Stanford, C.H.J. Davies, J.F. Nie, and N. Birbilis, Magnesium extrusion alloys: A review of developments and prospects, Int. Mater. Rev., 64(2019), No. 1, p. 27. doi: 10.1080/09506608.2017.1421439
      [5]
      L. Wu, D.N. Yang, G. Zhang, et al., Fabrication and characterization of Mg-M layered double hydroxide films on anodized magnesium alloy AZ31, Appl. Surf. Sci., 431(2018), p. 177. doi: 10.1016/j.apsusc.2017.06.244
      [6]
      S. García-Rodríguez, B. Torres, N. Pulido-González, E. Otero, and J. Rams, Corrosion behavior of 316L stainless steel coatings on ZE41 magnesium alloy in chloride environments, Surf. Coat. Technol., 378(2019), art. No. 124994. doi: 10.1016/j.surfcoat.2019.124994
      [7]
      A.S. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, and S.V. Gnedenkov, Protective properties of inhibitor-containing composite coatings on a Mg alloy, Corros. Sci., 102(2016), p. 348. doi: 10.1016/j.corsci.2015.10.026
      [8]
      W. Yang, D.P. Xu, J.L. Wang, X.F. Yao, and J. Chen, Microstructure and corrosion resistance of micro arc oxidation plus electrostatic powder spraying composite coating on magnesium alloy, Corros. Sci., 136(2018), p. 174. doi: 10.1016/j.corsci.2018.03.004
      [9]
      Y. Wang, Z.Q. Huang, Q. Yan, et al., Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test, Appl. Surf. Sci., 378(2016), p. 435. doi: 10.1016/j.apsusc.2016.04.011
      [10]
      S.V. Lamaka, B. Vaghefinazari, D. Mei, R.P. Petrauskas, D. Höche, and M.L. Zheludkevich, Comprehensive screening of Mg corrosion inhibitors, Corros. Sci., 128(2017), p. 224. doi: 10.1016/j.corsci.2017.07.011
      [11]
      Z.W Song, Z.H. Xie, G. Yu, B.N. Hu, X.M He, and X.Y. Zhang, A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy, J. Alloys Compd., 623(2015), p. 274. doi: 10.1016/j.jallcom.2014.10.130
      [12]
      W. Al Zoubi and Y.G. Ko, Flowerlike organic–inorganic coating responsible for extraordinary corrosion resistance via self-assembly of an organic compound, ACS Sustainable Chem. Eng., 6(2018), No. 3, p. 3546. doi: 10.1021/acssuschemeng.7b03870
      [13]
      O.L. Li, M. Tsunakawa, Y. Shimada, K. Nakamura, K. Nishinaka, and T. Ishizaki, Corrosion resistance of composite oxide film prepared on Ca-added flame-resistant magnesium alloy AZCa612 by micro-arc oxidation, Corros. Sci., 125(2017), p. 99. doi: 10.1016/j.corsci.2017.06.008
      [14]
      X. He, R.G. Song, and D.J. Kong, Microstructure and corrosion behaviours of composite coatings on S355 offshore steel prepared by laser cladding combined with micro-arc oxidation, Appl. Surf. Sci., 497(2019), art. No. 143703. doi: 10.1016/j.apsusc.2019.143703
      [15]
      W. Shang, F. Wu, S.Q. Jiang, Y.Q. Wen, N. Peng, and J.Q. Jiang, Effect of hydrophobicity on the corrosion resistance of microarc oxidation/self-assembly/nickel composite coatings on magnesium alloys, J. Mol. Liq., 330(2021), art. No. 115606. doi: 10.1016/j.molliq.2021.115606
      [16]
      D.W. Li, H.Y. Wang, D. Luo, Y. Liu, Z.W. Han, and L.Q. Ren, Corrosion resistance controllable of biomimetic superhydrophobic microstructured magnesium alloy by controlled adhesion, Surf. Coat. Technol., 347(2018), p. 173. doi: 10.1016/j.surfcoat.2018.04.078
      [17]
      S.T. Jiang, J. Zhang, S.Z. Shun, and M.F. Chen, The formation of FHA coating on biodegradable Mg–Zn–Zr alloy using a two-step chemical treatment method, Appl. Surf. Sci., 388(2016), p. 424. doi: 10.1016/j.apsusc.2015.12.087
      [18]
      J. Kuang, Z. Ba, Z.Z. Li, Z.Z. Wang, and J. Qiu, The study on corrosion resistance of superhydrophobic coatings on magnesium, Appl. Surf. Sci., 501(2020), art. No. 144137. doi: 10.1016/j.apsusc.2019.144137
      [19]
      Y. Liu, J.Z. Xue, D. Luo, H.Y. Wang, X. Gong, Z.W. Han, and L.Q. Ren, One-step fabrication of biomimetic superhydrophobic surface by electrodeposition on magnesium alloy and its corrosion inhibition, J. Colloid Interface Sci., 491(2017), p. 313. doi: 10.1016/j.jcis.2016.12.022
      [20]
      H. Tang, T. Wu, H. Wang, X. Jian, and Y.F. Wu, Corrosion behavior of HA containing ceramic coated magnesium alloy in Hank’s solution, J. Alloys Compd., 698(2017), p. 643. doi: 10.1016/j.jallcom.2016.12.168
      [21]
      D. Jiang, H. Zhou, S. Wan, G.Y. Cai, and Z.H. Dong, Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly, Surf. Coat. Technol., 339(2018), p. 155. doi: 10.1016/j.surfcoat.2018.02.001
      [22]
      Z.W. Wang, Y.L. Su, Q. Li, et al., Researching a highly anti-corrosion superhydrophobic film fabricated on AZ91D magnesium alloy and its anti-bacteria adhesion effect, Mater. Charact., 99(2015), p. 200. doi: 10.1016/j.matchar.2014.12.004
      [23]
      L.B. Feng, Y.L. Zhu, J. Wang, and X.T. Shi, One-step hydrothermal process to fabricate superhydrophobic surface on magnesium alloy with enhanced corrosion resistance and self-cleaning performance, Appl. Surf. Sci., 422(2017), p. 566. doi: 10.1016/j.apsusc.2017.06.066
      [24]
      J.F. Wei, B.C. Li, L.Y. Jing, N. Tian, X. Zhao, and J.P. Zhang, Efficient protection of Mg alloy enabled by combination of a conventional anti-corrosion coating and a superamphiphobic coating, Chem. Eng. J., 390(2020), art. No. 124562. doi: 10.1016/j.cej.2020.124562
      [25]
      J.M. Zhao, X. Xie, and C. Zhang, Effect of the graphene oxide additive on the corrosion resistance of the plasma electrolytic oxidation coating of the AZ31 magnesium alloy, Corros. Sci., 114(2017), p. 146. doi: 10.1016/j.corsci.2016.11.007
      [26]
      W. Shang, F. Wu, Y.Q. Wen, C.B. He, X.Q. Zhan, and Y.Q. Li, Corrosion resistance and mechanism of graphene oxide composite coatings on magnesium alloy, Ind. Eng. Chem. Res., 58(2019), No. 3, p. 1200. doi: 10.1021/acs.iecr.8b05303
      [27]
      R.R. Hu, Y.J. He, M.R. Huang, G.K. Zhao, and H.W. Zhu, Strong adhesion of graphene oxide coating on polymer separation membranes, Langmuir, 34(2018), No. 36, p. 10569. doi: 10.1021/acs.langmuir.8b02342
      [28]
      F. Gao, Y.D. Hu, Z.H. Gong, et al., Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys, Mater. Sci. Eng. C: Mater. Biol. Appl., 104(2019), art. No. 109947. doi: 10.1016/j.msec.2019.109947
      [29]
      Y. Zhang, J.P. Wang, Z. Zhang, et al., Silane-modified graphene oxide composite as a promising corrosion-inhibiting film for magnesium alloy AZ31, Front. Mater., 8(2021), art. No. 737792. doi: 10.3389/fmats.2021.737792
      [30]
      A.A. Nazeer, E. Al-Hetlani, M.O. Amin, T. Quiñones-Ruiz, and I.K. Lednev, A poly(butyl methacrylate)/graphene oxide/TiO2 nanocomposite coating with superior corrosion protection for AZ31 alloy in chloride solution, Chem. Eng. J., 361(2019), p. 485. doi: 10.1016/j.cej.2018.12.077
      [31]
      A.V. Talyzin, G. Mercier, A. Klechikov, et al., Brodie vs Hummers graphite oxides for preparation of multi-layered materials, Carbon, 115(2017), p. 430. doi: 10.1016/j.carbon.2016.12.097
      [32]
      H. Jie, Q.J. Xu, L. Wei, and Y.L. Min, Etching and heating treatment combined approach for superhydrophobic surface on brass substrates and the consequent corrosion resistance, Corros. Sci., 102(2016), p. 251. doi: 10.1016/j.corsci.2015.10.013
      [33]
      S.Q. Jiang, Z.Y. Zhang, D. Wang, Y.Q. Wen, N. Peng, and W. Shang, ZIF-8-based micro-arc oxidation composite coatings enhanced the corrosion resistance and superhydrophobicity of a Mg alloy, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.07.027
      [34]
      J. Yuan, R. Yuan, P. Li, D.L. Mao, and T. Feng, Fabrication and properties of the superhydrophobic ceria-based composite coating on magnesium alloy, Mater. Corros., 72(2021), No. 8, p. 1305. doi: 10.1002/maco.202112359
      [35]
      W.T. Yu, R.X. Sun, Z.Q. Guo, et al., Novel fluoridated hydroxyapatite/MAO composite coating on AZ31B magnesium alloy for biomedical application, Appl. Surf. Sci., 464(2019), p. 708. doi: 10.1016/j.apsusc.2018.09.148
      [36]
      C.Q. Wu, Q. Liu, R.R. Chen, et al., Fabrication of ZIF-8@SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 11106. doi: 10.1021/acsami.6b16848

    Catalog


    • /

      返回文章
      返回