留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(4)

数据统计

分享

计量
  • 文章访问数:  809
  • HTML全文浏览量:  218
  • PDF下载量:  35
  • 被引次数: 0
Bin Shi, Hongsheng Liang, Zijun Xie, Qing Chang,  and Hongjing Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1388-1397. https://doi.org/10.1007/s12613-023-2599-4
Cite this article as:
Bin Shi, Hongsheng Liang, Zijun Xie, Qing Chang,  and Hongjing Wu, Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1388-1397. https://doi.org/10.1007/s12613-023-2599-4
引用本文 PDF XML SpringerLink
研究论文

微观结构诱导增强CoFe2O4泡沫的介电损耗实现宽频电磁波吸收

  • 通讯作者:

    常卿    E-mail: changqingyau@126.com

    吴宏景    E-mail: wuhongjing@nwpu.edu.cn

文章亮点

  • (1) 建立了提高铁氧体复介电常数的微观结构调控策略。
  • (2) 系统地研究了柠檬酸比例对CoFe2O4泡沫微观结构和电磁参数的影响规律。
  • (3) 二维曲面的良好导电性有效提高了CoFe2O4泡沫的复介电常数,三维泡沫结构克服了CoFe2O4的高密度和磁团聚问题。
  • (4) 样品的有效吸收带宽高达7.3 GHz,超过了大多数CoFe2O4基复合吸波材料。
  • 随着5G电子信息时代的到来,各类智能电子设备在方便人们生活的同时也造成了严重的电磁干扰和污染,因此开发高性能的电磁波吸收材料具有重要的现实意义。CoFe2O4铁氧体已被广泛用于电磁波吸收,但其固有的缺点如低介电损耗、高密度和磁团聚等限制了其作为理想吸波材料的应用。本研究提出了一种微观结构调控策略(构建由二维曲面形成的三维泡沫结构)来解决上述难题,采用溶胶-凝胶自蔓延燃烧法合成了CoFe2O4泡沫,通过调节柠檬酸与硝酸铁的摩尔比(0.5、1.0和1.5)来调控CoFe2O4泡沫的微观形貌和电磁参数。二维曲面的良好的导电性可以有效提高CoFe2O4的复介电常数,三维泡沫结构则克服了CoFe2O4纳米颗粒的高密度和磁团聚问题。由于适中的电磁参数产生了良好的阻抗匹配和电导损耗,S0.5的有效吸收带宽高达7.3 GHz,超过了大多数CoFe2O4基吸收材料。S1.5的有效吸收带宽也达到了5.0 GHz(8.9–13.9 GHz),覆盖了X波段的大部分,显示出良好的军事应用潜力,这主要得益于晶格缺陷和异质界面产生的强极化效应。本研究为轻量化宽带纯铁氧体的理论设计和实际生产提供了新的思路。
  • Research Article

    Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption

    + Author Affiliations
    • CoFe2O4 has been widely used for electromagnetic wave absorption owing to its high Snoek limit, high anisotropy, and suitable saturation magnetization; however, its inherent shortcomings, including low dielectric loss, high density, and magnetic agglomeration, limit its application as an ideal absorbent. This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe2O4 synthesized via a sol–gel auto-combustion method. A series of CoFe2O4 foams (S0.5, S1.0, and S1.5, corresponding to foams with citric acid (CA)-to-Fe(NO3)3·9H2O molar ratios of 0.5, 1.0, and 1.5, respectively) with two-dimensional (2D) curved surfaces were obtained through the adjustment of CA-to-Fe3+ ratio, and the electromagnetic parameters were adjusted through morphology regulation. Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity, the effective absorption bandwidth (EAB) of S0.5 was as high as 7.3 GHz, exceeding those of most CoFe2O4-based absorbents. Moreover, the EAB of S1.5 reached 5.0 GHz (8.9–13.9 GHz), covering most of the X band, owing to the intense polarization provided by lattice defects and the heterogeneous interface. The three-dimensional (3D) foam structure circumvented the high density and magnetic agglomeration issues of CoFe2O4 nanoparticles, and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe2O4. This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites.
    • loading
    • Supplementary Information-s12613-023-2599-4.doc
    • [1]
      H.S. Liang, L.M. Zhang, and H.J. Wu, Exploration of twin-modified grain boundary engineering in metallic copper predominated electromagnetic wave absorber, Small, 18(2022), No. 38, art. No. 2203620. doi: 10.1002/smll.202203620
      [2]
      M. Qin, L.M. Zhang, and H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. 2105553. doi: 10.1002/advs.202105553
      [3]
      Z.H. Zhao, L.M. Zhang, and H.J. Wu, Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers, Adv. Mater., 34(2022), No. 43, art. No. 2205376. doi: 10.1002/adma.202205376
      [4]
      H.S. Liang, H. Xing, Z.H. Ma, and H.J. Wu, Tailoring high-electroconductivity carbon cloth coated by nickel cobaltate/nickel oxide: A case of transition from microwave shielding to absorption, Carbon, 183(2021), p. 138. doi: 10.1016/j.carbon.2021.07.002
      [5]
      H.S. Liang, H. Xing, M. Qin, and H.J. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials, Composites Part A, 135(2020), art. No. 105959. doi: 10.1016/j.compositesa.2020.105959
      [6]
      J.L. Liu, L.M. Zhang, and H.J. Wu, Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F regulation engineering, Adv. Funct. Mater., 32(2022), No. 13, art. No. 2110496. doi: 10.1002/adfm.202110496
      [7]
      X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, and W. Du, Spinel structured MFe2O4 (M=Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review, Chem. Eng. J., 428(2022), art. No. 131160. doi: 10.1016/j.cej.2021.131160
      [8]
      Sonu, V. Dutta, S. Sharma, et al., Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water, J. Saudi Chem. Soc., 23(2019), No. 8, p. 1119. doi: 10.1016/j.jscs.2019.07.003
      [9]
      S. Golchinvafa, S.M. Masoudpanah, and M. Jazirehpour, Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders, J. Alloys Compd., 809(2019), art. No. 151746. doi: 10.1016/j.jallcom.2019.151746
      [10]
      V. Mahdikhah, A. Ataie, A. Babaei, S. Sheibani, C.W. Ow-Yang, and S.K. Abkenar, CoFe2O4/Fe magnetic nanocomposite: Exchange coupling behavior and microwave absorbing property, Ceram. Int., 46(2020), No. 11, p. 17903. doi: 10.1016/j.ceramint.2020.04.099
      [11]
      S.L. Zhang, Q.Z. Jiao, Y. Zhao, H.S. Li, and Q. Wu, Preparation of rugby-shaped CoFe2O4 particles and their microwave absorbing properties, J. Mater. Chem. A, 2(2014), No. 42, p. 18033. doi: 10.1039/C4TA04286G
      [12]
      M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application, Adv. Sci., 8(2021), No. 8, art. No. 2004640. doi: 10.1002/advs.202004640
      [13]
      Y. Liu, Z. Chen, Y. Zhang, et al., Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites, ACS Appl. Mater. Interfaces, 10(2018), No. 16, p. 13860. doi: 10.1021/acsami.8b02137
      [14]
      X.Y. Wang, T. Zhu, S.C. Chang, Y.K. Lu, W.B. Mi, and W. Wang, 3D nest-like architecture of core–shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance, ACS Appl. Mater. Interfaces, 12(2020), No. 9, p. 11252. doi: 10.1021/acsami.9b23489
      [15]
      X.Q. Cui, W. Liu, W.H. Gu, X.H. Liang, and G.B. Ji, Two-dimensional MoS2 modified using CoFe2O4 nanoparticles with enhanced microwave response in the X and Ku band, Inorg. Chem. Front., 6(2019), No. 2, p. 590. doi: 10.1039/C8QI01304G
      [16]
      T. Zhu, S.C. Chang, Y.F. Song, M. Lahoubi, and W. Wang, PVP-encapsulated CoFe2O4/rGO composites with controllable electromagnetic wave absorption performance, Chem. Eng. J., 373(2019), p. 755. doi: 10.1016/j.cej.2019.05.079
      [17]
      P. Yadav, S. Rattan, A. Tripathi, and S. Kumar, Tailoring of complex permittivity, permeability, and microwave-absorbing properties of CoFe2O4/NG/PMMA nanocomposites through swift heavy ions irradiation, Ceram. Int., 46(2020), No. 1, p. 317. doi: 10.1016/j.ceramint.2019.08.265
      [18]
      J. He, S. Liu, L.W. Deng, et al., Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites, Appl. Surf. Sci., 504(2020), art. No. 144210. doi: 10.1016/j.apsusc.2019.144210
      [19]
      N. Zhang, X.D. Liu, Y. Huang, et al., Novel nanocomposites of cobalt ferrite covalently-grafted on graphene by amide bond as superior electromagnetic wave absorber, J. Colloid Interface Sci., 540(2019), p. 218. doi: 10.1016/j.jcis.2019.01.025
      [20]
      X.H. Li, J. Feng, Y.P. Du, et al., One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber, J. Mater. Chem. A, 3(2015), No. 10, p. 5535. doi: 10.1039/C4TA05718J
      [21]
      J.T. Zhou, R.Y. Tan, Z.J. Yao, H.Y. Lin, and Z. Li, Preparation of CoFe2O4 hollow spheres with carbon sphere templates and their wave absorption performance, Mater. Chem. Phys., 244(2020), art. No. 122697. doi: 10.1016/j.matchemphys.2020.122697
      [22]
      W.J. Ma, P. He, T.Y. Wang, et al., Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres, Chem. Eng. J., 420(2021), art. No. 129875. doi: 10.1016/j.cej.2021.129875
      [23]
      X.F. Yang, M.M. Liu, Y.Q. Lan, et al., Cu2+ induced self-assembly of urchin-like Co1−xCux into hollow microspheres toward wideband and thin microwave absorbers, Chem. Eng. J., 426(2021), art. No. 130779. doi: 10.1016/j.cej.2021.130779
      [24]
      M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2103436. doi: 10.1002/adfm.202103436
      [25]
      X. Ni, Z.Z. He, X. Liu, et al., Ionic liquid-assisted solvothermal synthesis of hollow CoFe2O4 microspheres and their absorbing performances, Mater. Lett., 193(2017), p. 232. doi: 10.1016/j.matlet.2017.01.109
      [26]
      Q. Chang, H.S. Liang, B. Shi, and H.J. Wu, Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption, iScience, 25(2022), No. 3, art. No. 103925. doi: 10.1016/j.isci.2022.103925
      [27]
      Z.H. Zhao, X.J. Zhou, K.C. Kou, and H.J. Wu, PVP-assisted transformation of ZIF-67 into cobalt layered double hydroxide/carbon fiber as electromagnetic wave absorber, Carbon, 173(2021), p. 80. doi: 10.1016/j.carbon.2020.11.009
      [28]
      J. Zhou, X.F. Shu, Y.Q. Wang, et al., Enhanced microwave absorption properties of (1−x)CoFe2O4/xCoFe composites at multiple frequency bands, J. Magn. Magn. Mater., 493(2020), art. No. 165699. doi: 10.1016/j.jmmm.2019.165699
      [29]
      Q. Chang, H.S. Liang, B. Shi, and H.J. Wu, Sodium oxalate-induced hydrothermal synthesis of wood-texture-column-like NiCo2O4 with broad bandwidth electromagnetic wave absorption performance, J. Colloid Interface Sci., 600(2021), p. 49. doi: 10.1016/j.jcis.2021.05.019
      [30]
      Q. Chang, H.S. Liang, B. Shi, et al., Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance, J. Colloid Interface Sci., 588(2021), p. 336. doi: 10.1016/j.jcis.2020.12.099
      [31]
      M. Zhang, J.H. Zhang, H. Lin, et al., Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands, Composites Part B, 190(2020), art. No. 107902. doi: 10.1016/j.compositesb.2020.107902
      [32]
      Y.J. Li, M.W. Yuan, H.H. Liu, and G.B. Sun, In situ synthesis of CoFe2O4 nanocrystals decorated in mesoporous carbon nanofibers with enhanced electromagnetic performance, J. Alloys Compd., 826(2020), art. No. 154147. doi: 10.1016/j.jallcom.2020.154147
      [33]
      J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
      [34]
      P.C.R. Varma, R.S. Manna, D. Banerjee, M.R. Varma, K.G. Suresh, and A.K. Nigam, Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study, J. Alloys Compd., 453(2008), No. 1-2, p. 298. doi: 10.1016/j.jallcom.2006.11.058
      [35]
      R. Han, W. Li, W.W. Pan, M.G. Zhu, D. Zhou, and F.S. Li, 1D magnetic materials of Fe3O4 and Fe with high performance of microwave absorption fabricated by electrospinning method, Sci. Rep., 4(2014), art. No. 7493. doi: 10.1038/srep07493
      [36]
      X.Y. Wang, Y.K. Lu, T. Zhu, S.C. Chang, and W. Wang, CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption, Chem. Eng. J., 388(2020), art. No. 124317. doi: 10.1016/j.cej.2020.124317
      [37]
      N. Zhang, Y. Huang, M. Zong, X. Ding, S.P. Li, and M.Y. Wang, Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber, Chem. Eng. J., 308(2017), p. 214. doi: 10.1016/j.cej.2016.09.065
      [38]
      X.Y. Zhang, L. Xia, B. Zhong, et al., Three-dimensional reduced graphene oxide/CoFe2O4 composites loaded with LAS particles for lightweight and enhanced microwave absorption properties, J. Alloys Compd., 799(2019), p. 368. doi: 10.1016/j.jallcom.2019.05.281
      [39]
      W.X. Li, L.C. Wang, G.M. Li, and Y. Xu, Single-crystal octahedral CoFe2O4 nanoparticles loaded on carbon balls as a lightweight microwave absorbent, J. Alloys Compd., 633(2015), p. 11. doi: 10.1016/j.jallcom.2015.02.006
      [40]
      H.J. Wu, M. Qin, and L.M. Zhang, NiCo2O4 constructed by different dimensions of building blocks with superior electromagnetic wave absorption performance, Composites Part B, 182(2020), art. No. 107620. doi: 10.1016/j.compositesb.2019.107620
      [41]
      F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43. doi: 10.1007/s40820-020-00568-1
      [42]
      R. Liu, Z.G. An, B. Liao, and J.J. Zhang, FeNi alloy and nickel ferrite codoped carbon hollow microspheres for high-efficiency microwave absorption, J. Mater. Chem. C, 10(2022), No. 15, p. 6085. doi: 10.1039/D2TC00135G
      [43]
      X.D. Liu, Y. Huang, L. Ding, X.X. Zhao, P.B. Liu, and T.H. Li, Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption, J. Mater. Sci. Technol., 72(2021), p. 93. doi: 10.1016/j.jmst.2020.09.012
      [44]
      Z.G. Gao, Z.R. Jia, K.K. Wang, X.H. Liu, L. Bi, and G.L. Wu, Simultaneous enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics, Chem. Eng. J., 402(2020), art. No. 125951. doi: 10.1016/j.cej.2020.125951
      [45]
      M.M. Zhang, Z.Y. Jiang, X.Y. Lv, et al., Microwave absorption performance of reduced graphene oxide with negative imaginary permeability, J. Phys. D: Appl. Phys., 53(2020), No. 2, art. No. 02LT01. doi: 10.1088/1361-6463/ab48a7
      [46]
      L.W. Wu, Y. Lu, W. Shao, H.Y. Wei, G.X. Tong, and W.H. Wu, Simple salt-template assembly for layered heterostructures of C/ferrite and EG/C/MFe2O4 (M = Fe, Co, Ni, Zn) nanoparticle arrays toward superior microwave absorption capabilities, Adv. Mater. Interfaces, 7(2020), No. 18, art. No. 2000736. doi: 10.1002/admi.202000736
      [47]
      L.G. Ren, Y.Q. Wang, X. Zhang, Q.C. He, and G.L. Wu, Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 504. doi: 10.1007/s12613-022-2509-1
      [48]
      Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 405. doi: 10.1007/s12613-022-2555-8
      [49]
      G.M. Li, X.J. Xue, L.T. Mao, et al., Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 591. doi: 10.1007/s12613-022-2534-0
      [50]
      Y.Y. Zhou, Z.Y. Bai, X.Y. Yang, et al., In-situ grown NiCo bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 515. doi: 10.1007/s12613-022-2496-2
      [51]
      H.S. Liang, G. Chen, D. Liu, et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber, Adv. Funct. Mater., 33(2023), No. 7, art. No. 2212604. doi: 10.1002/adfm.202212604
      [52]
      X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 559. doi: 10.1007/s12613-022-2488-2
      [53]
      Q.H. Liu, Q. Cao, H. Bi, et al., CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption, Adv. Mater., 28(2016), No. 3, p. 486. doi: 10.1002/adma.201503149
      [54]
      R.C. Che, C.Y. Zhi, C.Y. Liang, and X.G. Zhou, Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite, Appl. Phys. Lett., 88(2006), No. 3, art. No. 033105. doi: 10.1063/1.2165276

    Catalog


    • /

      返回文章
      返回