Cite this article as: |
Cuiping Li, Xue Li, and Zhu’en Ruan, Rheological properties of a multiscale granular system during mixing of cemented paste backfill: A review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1444-1454. https://doi.org/10.1007/s12613-023-2601-1 |
阮竹恩 E-mail: ustb_ruanzhuen@hotmail.com
[1] |
Z.E. Ruan, A.X. Wu, H.Z. Jiao, et al., Advances and trends on thickening of full-tailings slurry in China, Chin. J. Nonferrous Met., 32(2022), p. 286.
|
[2] |
T. Gao, W. Sun, Z. Liu, and H. Cheng, Investigation on fracture characteristics and failure pattern of inclined layered cemented tailings backfill, Constr. Build. Mater., 343(2022), art. No. 128110. doi: 10.1016/j.conbuildmat.2022.128110
|
[3] |
J.X. Li, W. Sun, Q.Q. Li, S. Chen, M.L. Yuan, and H. Xia, Influence of layered angle on dynamic characteristics of backfill under impact loading, Minerals, 12(2022), No. 5, art. No. 511. doi: 10.3390/min12050511
|
[4] |
W. Sun, S.Y. Zhang, J.X. Li, and Z.Y. Li, Experimental study on energy dissipation of layered backfill under impact load, Constr. Build. Mater., 347(2022), art. No. 128478. doi: 10.1016/j.conbuildmat.2022.128478
|
[5] |
L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
|
[6] |
A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
|
[7] |
C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
|
[8] |
S. Wang, X. Song, M. Wei, et al., Flow characteristics of fresh cemented paste backfill containing flocculant under variable shear rate based on water migration, Min. Metall. Explor., 39(2022), No. 3, p. 1189.
|
[9] |
H. Jiang, M. Fall, E. Yilmaz, Y. Li, and L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy, Powder Technol., 372(2020), p. 258. doi: 10.1016/j.powtec.2020.06.009
|
[10] |
J. Qiu, Z. Guo, L. Yang, H. Jiang, and Y. Zhao, Effects of packing density and water film thickness on the fluidity behaviour of cemented paste backfill, Powder Technol., 359(2020), p. 27. doi: 10.1016/j.powtec.2019.10.046
|
[11] |
S.G. Liu and M. Fall, Fresh and hardened properties of cemented paste backfill: Links to mixing time, Constr. Build. Mater., 324(2022), art. No. 126688. doi: 10.1016/j.conbuildmat.2022.126688
|
[12] |
R. Collet, D. Oulahna, A. De Ryck, P.H. Jezequel, and M. Martin, Mixing of a wet granular medium: Effect of the particle size, the liquid and the granular compacity on the intensity consumption, Chem. Eng. J., 164(2010), No. 2-3, p. 299. doi: 10.1016/j.cej.2010.07.012
|
[13] |
J.H. Kim, H.J. Yim, and R.D. Ferron, In situ measurement of the rheological properties and agglomeration on cementitious pastes, J. Rheol., 60(2016), No. 4, p. 695. doi: 10.1122/1.4954251
|
[14] |
X. Li, C.P. Li, Z.E. Ruan, B.H. Yan, H.Z. Hou, and L. Chen, Analysis of particle migration and agglomeration in paste mixing based on discrete element method, Constr. Build. Mater., 352(2022), art. No. 129007. doi: 10.1016/j.conbuildmat.2022.129007
|
[15] |
C.P. Li, Z.H. Huang, Z.E. Ruan, and S.Y. Wang, Analysis of the research progress in the mechanism of particle mechanics action on the rheological behavior of paste in metal mines, Chin. J. Eng., 44(2022), No. 8, p. 1293.
|
[16] |
F. Chen, R. Su, L. Yang, et al., Effect of mixing speed on rheological properties of cemented paste backfill, Chin. J. Nonferrous Met., 32(2022), No. 11, p. 3541.
|
[17] |
X. Li, C.P. Li, B.H. Yan, and H.Z. Hou, Analysis of the influence factors of paste stirring based on discrete element method, Met. Mine, 2021, No. 3, p. 19.
|
[18] |
L.H. Yang, Research on the Rheological Characteristics and the Mechanism of Shear Action during Paste Mixing [Dissertation], University of Science and Technology Beijing, Beijing, 2020.
|
[19] |
B.J. Ennis, J. Li, and P. Robert, The influence of viscosity on the strength of an axially strained pendular liquid bridge, Chem. Eng. Sci., 45(1990), No. 10, p. 3071. doi: 10.1016/0009-2509(90)80054-I
|
[20] |
S.M. Iveson, P.A.L. Wauters, S. Forrest, J.D. Litster, G.M.H. Meesters, and B. Scarlett, Growth regime map for liquid-bound granules: Further development and experimental validation, Powder Technol., 117(2001), No. 1-2, p. 83. doi: 10.1016/S0032-5910(01)00317-5
|
[21] |
M. Benali, V. Gerbaud, and M. Hemati, Effect of operating conditions and physico–chemical properties on the wet granulation kinetics in high shear mixer, Powder Technol., 190(2009), No. 1-2, p. 160. doi: 10.1016/j.powtec.2008.04.082
|
[22] |
H. Kristensen, P. Holm, and T. Schaefer, Mechanical properties of moist agglomerates in relation to granulation mechanisms part I. Deformability of moist, densified agglomerates, Powder Technol., 44(1985), No. 3, p. 227. doi: 10.1016/0032-5910(85)85004-X
|
[23] |
H. Takenaka, Y. Kawashima, and J.U.N. Hishida, The effects of interfacial physical properties on the cohesive forces of moist powder in air and in liquid, Chem. Pharm. Bull., 29(1981), No. 9, p. 2653. doi: 10.1248/cpb.29.2653
|
[24] |
N. Roussel, A. Lemaître, R.J. Flatt, and P. Coussot, Steady state flow of cement suspensions: A micromechanical state of the art, Cem. Concr. Res., 40(2010), No. 1, p. 77. doi: 10.1016/j.cemconres.2009.08.026
|
[25] |
N.J. Wagner and J.F. Brady, Shear thickening in colloidal dispersions, Phys. Today, 62(2009), No. 10, p. 27. doi: 10.1063/1.3248476
|
[26] |
R.J. Flatt, Dispersion forces in cement suspensions, Cem. Concr. Res., 34(2004), No. 3, p. 399. doi: 10.1016/j.cemconres.2003.08.019
|
[27] |
W. Wu, R.F. Giese, and C.J. van Oss, Stability versus flocculation of particle suspensions in water—Correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory, Colloids Surf. B, 14(1999), No. 1-4, p. 47. doi: 10.1016/S0927-7765(99)00023-5
|
[28] |
J.R. Royer, D.L. Blair, and S.D. Hudson, Rheological signature of frictional interactions in shear thickening suspensions, Phys. Rev. Lett., 116(2016), No. 18, art. No. 188301. doi: 10.1103/PhysRevLett.116.188301
|
[29] |
C. Clavaud, A. Bérut, B. Metzger, and Y. Forterre, Revealing the frictional transition in shear-thickening suspensions, Proc. Natl. Acad. Sci. USA, 114(2017), No. 20, p. 5147. doi: 10.1073/pnas.1703926114
|
[30] |
G.V. Franks, Z.W. Zhou, N.J. Duin, and D.V. Boger, Effect of interparticle forces on shear thickening of oxide suspensions, J. Rheol., 44(2000), No. 4, p. 759. doi: 10.1122/1.551111
|
[31] |
J. Mewis and N.J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, Cambridge, 2012.
|
[32] |
S. Gallier, E. Lemaire, F. Peters, and L. Lobry, Rheology of sheared suspensions of rough frictional particles, J. Fluid Mech., 757(2014), p. 514. doi: 10.1017/jfm.2014.507
|
[33] |
R.V. More and A.M. Ardekani, Roughness induced shear thickening in frictional non-Brownian suspensions: A numerical study, J. Rheol., 64(2020), No. 2, p. 283. doi: 10.1122/1.5129094
|
[34] |
É. Guazzelli and O. Pouliquen, Rheology of dense granular suspensions, J. Fluid Mech., 852(2018), art. No. P1. doi: 10.1017/jfm.2018.548
|
[35] |
R. Mari, R. Seto, J.F. Morris, and M.M. Denn, Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions, J. Rheol., 58(2014), No. 6, p. 1693. doi: 10.1122/1.4890747
|
[36] |
J. Yammine, M. Chaouche, M. Guerinet, M. Moranville, and N. Roussel, From ordinary rhelogy concrete to self compacting concrete: A transition between frictional and hydrodynamic interactions, Cem. Concr. Res., 38(2008), No. 7, p. 890. doi: 10.1016/j.cemconres.2008.03.011
|
[37] |
L.F. Nielsen, Rheology of some fluid extreme composites: Such as fresh self-compacting concrete, Nord. Concr. Res., 27(2001), p. 83.
|
[38] |
P. Coussot and C. Ancey, Rheophysical classification of concentrated suspensions and granular pastes, Phys. Rev. E, 59(1999), No. 4, p. 4445. doi: 10.1103/PhysRevE.59.4445
|
[39] |
A.B. Yu, C.L. Feng, R.P. Zou, and R.Y. Yang, On the relationship between porosity and interparticle forces, Powder Technol., 130(2003), No. 1-3, p. 70. doi: 10.1016/S0032-5910(02)00228-0
|
[40] |
A. Burggraeve, T. Monteyne, C. Vervaet, J.P. Remon, and T. De Beer, Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review, Eur. J. Pharm. Biopharm., 83(2013), No. 1, p. 2. doi: 10.1016/j.ejpb.2012.09.008
|
[41] |
S.M. Iveson, J.D. Litster, K. Hapgood, and B.J. Ennis, Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review, Powder Technol., 117(2001), No. 1-2, p. 3. doi: 10.1016/S0032-5910(01)00313-8
|
[42] |
P. Suresh, I. Sreedhar, R. Vaidhiswaran, and A. Venugopal, A comprehensive review on process and engineering aspects of pharmaceutical wet granulation, Chem. Eng. J., 328(2017), p. 785. doi: 10.1016/j.cej.2017.07.091
|
[43] |
H. Leuenberger, M. Puchkov, E. Krausbauer, and G. Betz, Manufacturing pharmaceutical granules: Is the granulation end-point a myth? Powder Technol., 189(2009), No. 2, p. 141. doi: 10.1016/j.powtec.2008.04.005
|
[44] |
D. Lievano, S. Velankar, and J.J. McCarthy, The rupture force of liquid bridges in two and three particle systems, Powder Technol., 313(2017), p. 18. doi: 10.1016/j.powtec.2017.02.053
|
[45] |
C.L. Flemmer, On the regime boundaries of moisture in granular materials, Powder Technol., 66(1991), No. 2, p. 191. doi: 10.1016/0032-5910(91)80100-W
|
[46] |
T.T. Vo, P. Mutabaruka, S. Nezamabadi, et al., Mechanical strength of wet particle agglomerates, Mech. Res. Commun., 92(2018), p. 1. doi: 10.1016/j.mechrescom.2018.07.003
|
[47] |
P. Jarvis, B. Jefferson, J. Gregory, and S.A. Parsons, A review of floc strength and breakage, Water Res., 39(2005), No. 14, p. 3121. doi: 10.1016/j.watres.2005.05.022
|
[48] |
G.K. Reynolds, J.S. Fu, Y.S. Cheong, M.J. Hounslow, and A.D. Salman, Breakage in granulation: A review, Chem. Eng. Sci., 60(2005), No. 14, p. 3969. doi: 10.1016/j.ces.2005.02.029
|
[49] |
J.S. Ramaker, M.A. Jelgersma, P. Vonk, and N.W.F. Kossen, Scale-down of a high-shear pelletisation process: Flow profile and growth kinetics, Int. J. Pharm., 166(1998), No. 1, p. 89. doi: 10.1016/S0378-5173(98)00030-1
|
[50] |
R.D. Ferron, S. Shah, E. Fuente, and C. Negro, Aggregation and breakage kinetics of fresh cement paste, Cem. Concr. Res., 50(2013), p. 1. doi: 10.1016/j.cemconres.2013.03.002
|
[51] |
J.E. Wallevik, Rheological properties of cement paste: Thixotropic behavior and structural breakdown, Cem. Concr. Res., 39(2009), No. 1, p. 14. doi: 10.1016/j.cemconres.2008.10.001
|
[52] |
P.N. Hiremath and S.C. Yaragal, Influence of mixing method, speed and duration on the fresh and hardened properties of Reactive Powder Concrete, Constr. Build. Mater., 141(2017), p. 271. doi: 10.1016/j.conbuildmat.2017.03.009
|
[53] |
B. Cazacliu and N. Roquet, Concrete mixing kinetics by means of power measurement, Cem. Concr. Res., 39(2009), No. 3, p. 182. doi: 10.1016/j.cemconres.2008.12.005
|
[54] |
D. Jiao, C. Shi, and Q. Yuan, Influences of shear-mixing rate and fly ash on rheological behavior of cement pastes under continuous mixing, Constr. Build. Mater., 188(2018), p. 170. doi: 10.1016/j.conbuildmat.2018.08.091
|
[55] |
D. Han and R.D. Ferron, Influence of high mixing intensity on rheology, hydration, and microstructure of fresh state cement paste, Cem. Concr. Res., 84(2016), p. 95. doi: 10.1016/j.cemconres.2016.03.004
|
[56] |
E. Brown and H.M. Jaeger, Through thick and thin, Science, 333(2011), No. 6047, p. 1230. doi: 10.1126/science.1211155
|
[57] |
H.J. Wang, L.H. Yang, H. Li, X. Zhou, and X.T. Wang, Using coupled rheometer-FBRM to study rheological properties and microstructure of cemented paste backfill, Adv. Mater. Sci. Eng., 2019(2019), art. No. 6813929. doi: 10.1155/2019/6813929
|
[58] |
L.H. Yang, H.J. Wang, H. Li, and X. Zhou, Effect of high mixing intensity on rheological properties of cemented paste backfill, Minerals, 9(2019), No. 4, art. No. 240. doi: 10.3390/min9040240
|
[59] |
M. Yang and H.M. Jennings, Influences of mixing methods on the microstructure and rheological behavior of cement paste, Adv. Cem. Based Mater., 2(1995), No. 2, p. 70. doi: 10.1016/1065-7355(95)90027-6
|
[60] |
L.H. Yang, H.J. Wang, A.X. Wu, et al., Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill, Constr. Build. Mater., 247(2020), art. No. 118516. doi: 10.1016/j.conbuildmat.2020.118516
|
[61] |
C.D. Min, X.B. Li, S.Y. He, et al., Effect of mixing time on the properties of phosphogypsum-based cemented backfill, Constr. Build. Mater., 210(2019), p. 564. doi: 10.1016/j.conbuildmat.2019.03.187
|
[62] |
F.D. Larrard, Concrete Mixture Proportioning: A Scientific Approach, CRC Press, London, 1999.
|
[63] |
T. Lecompte, A. Perrot, V. Picandet, H. Bellegou, and S. Amziane, Cement-based mixes: Shearing properties and pore pressure, Cem. Concr. Res., 42(2012), No. 1, p. 139. doi: 10.1016/j.cemconres.2011.09.007
|
[64] |
S. Cao, E. Yilmaz, and W.D. Song, Evaluation of viscosity, strength and microstructural properties of cemented tailings backfill, Minerals, 8(2018), No. 8, art. No. 352. doi: 10.3390/min8080352
|
[65] |
S.Y. Wang, A.X. Wu, Z.E. Ruan, and S.M. Chen, Rheological properties of paste slurry and influence factors based on pipe loop test, J. Cent. South Univ. Sci. Technol., 49(2018), No. 10, p. 2519.
|
[66] |
Z.E. Ruan, A.X. Wu, R. Bürger, et al., Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry, Powder Technol., 392(2021), p. 278. doi: 10.1016/j.powtec.2021.07.008
|
[67] |
B.L. Xiao, M. Fall, and A. Roshani, Towards understanding the rheological properties of slag-cemented paste backfill, Int. J. Min. Reclam. Environ., 35(2021), No. 4, p. 268. doi: 10.1080/17480930.2020.1807667
|
[68] |
G. Jiang, A. Wu, Y. Wang, and J. Li, The rheological behavior of paste prepared from hemihydrate phosphogypsum and tailing, Constr. Build. Mater., 229(2019), art. No. 116870. doi: 10.1016/j.conbuildmat.2019.116870
|
[69] |
General Administration of Quality Supervision, People’s Republic of China, GB/T39489–2020: Technical Specification for the Total Tailings Paste Backfill, Standards Press of China, Beijing, 2020.
|
[70] |
D.W. Jiao, C.J. Shi, Q. Yuan, X.P. An, Y. Liu, and H. Li, Effect of constituents on rheological properties of fresh concrete—A review, Cem. Concr. Compos., 83(2017), p. 146. doi: 10.1016/j.cemconcomp.2017.07.016
|
[71] |
L.H. Yang, H.J. Wang, A.X. Wu, P. Xing, and H.W. Gao, Thixotropy of unclassified pastes in the process of stirring and shearing, Chin. J. Eng., 38(2016), No. 10, p. 1343.
|
[72] |
W.B. Xu, B.G. Yang, S.L. Yang, and P. Dang, Experimental study on correlativity between rheological parameters and grain grading of coal gauge backfill slurry, J. Cent. South Univ. Sci. Technol., 47(2016), No. 4, p. 1282.
|
[73] |
A.X. Wu and H.J. Wang, Theory and Technology of Paste Backfill in Metal Mines, Science Press, Beijing, 2015.
|
[74] |
F. Sofra, Rheological properties of fresh cemented paste tailings, [in] Paste Tailings Management, Springer International Publishing, Switzerland, 2017, p. 33.
|
[75] |
X.H. Liu, A.X. Wu, H.J. Wang, and Y.M. Wang, Influence mechanism and calculation model of CPB rheological parameters, Chin. J. Eng., 39(2017), No. 2, p. 190.
|
[76] |
N. Roussel, Steady and transient flow behaviour of fresh cement pastes, Cem. Concr. Res., 35(2005), No. 9, p. 1656. doi: 10.1016/j.cemconres.2004.08.001
|
[77] |
V. Wong, K.W. Chan, and A.K.H. Kwan, Applying theories of particle packing and rheology to concrete for sustainable development, Organiz. Technol. Manage. Constr. Int. J., 5(2013), No. 2, p. 844.
|
[78] |
A.K.H. Kwan, K.W. Chan, and V. Wong, A 3-parameter particle packing model incorporating the wedging effect, Powder Technol., 237(2013), p. 172. doi: 10.1016/j.powtec.2013.01.043
|
[79] |
D.M. Liu, Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction, J. Mater. Sci., 35(2000), No. 21, p. 5503. doi: 10.1023/A:1004885432221
|
[80] |
R.D. Hooton, M.R. Geiker, M. Brandl, L.N. Thrane, and L.F. Nielsen, On the effect of coarse aggregate fraction and shape on the rheological properties of self-compacting concrete, Cement Concrete Aggr., 24(2002), No. 1, art. No. 3. doi: 10.1520/CCA10484J
|
[81] |
H.C. Long, J.X. Xia, and B. Cao, Effect of coarse/fine materials ratio on rheological properties, Min. Metall. Eng., 37(2017), No. 2, p. 6.
|
[82] |
H.J. Wang, G.C. Li, A.X. Wu, et al., Study on rheological properties of paste with different corase aggregate, Min. Res. Dev., 34(2014), No. 7, p. 59.
|
[83] |
Y. Liu, J.P. Li, Y. Lu, and Y.M. Zhou, Experimental studying of coal gangue large particle size coarse aggregate ratio to filling paste property, Coal Min. Technol., 21(2016), No. 5, p. 1.
|
[84] |
J. Hu and K. Wang, Effect of coarse aggregate characteristics on concrete rheology, Constr. Build. Mater., 25(2011), No. 3, p. 1196. doi: 10.1016/j.conbuildmat.2010.09.035
|
[85] |
J. Wu, M. Feng, X. Mao, et al., Particle size distribution of aggregate effects on mechanical and structural properties of cemented rockfill: Experiments and modeling, Constr. Build. Mater., 193(2018), p. 295. doi: 10.1016/j.conbuildmat.2018.10.208
|
[86] |
J. Wu, H. Jing, Y. Gao, Q. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
|
[87] |
A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of researches on rheology of paste backfill using unclassified tailings (Part 1): Concepts, characteristics and models, Chin. J. Eng., 42(2020), No. 7, p. 803.
|
[88] |
H.A. Barnes, Thixotropy—A review, J. Non-Newton. Fluid Mech., 70(1997), No. 1-2, p. 1. doi: 10.1016/S0377-0257(97)00004-9
|
[89] |
K. Vance, G. Sant, and N. Neithalath, The rheology of cementitious suspensions: A closer look at experimental parameters and property determination using common rheological models, Cem. Concr. Compos., 59(2015), p. 38. doi: 10.1016/j.cemconcomp.2015.03.001
|
[90] |
Y. Qian and S. Kawashima, Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy, Cem. Concr. Compos., 86(2018), p. 288. doi: 10.1016/j.cemconcomp.2017.11.019
|
[91] |
X. Chateau, G. Ovarlez, and K.L. Trung, Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, J. Rheol., 52(2008), No. 2, p. 489. doi: 10.1122/1.2838254
|
[92] |
C.P. Li, B.H. Yan, and H.Z. Hou, Rheological behavior of solid–liquid conversion stage of unclassified tailings backfill paste, Chin. J. Nonferrous Met., 30(2020), No. 5, p. 1209.
|
[93] |
H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
|
[94] |
A. Wu, Y. Wang, and H. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
|
[95] |
T.D. Nguyen, T.H. Tran, and N.D. Hoang, Prediction of interface yield stress and plastic viscosity of fresh concrete using a hybrid machine learning approach, Adv. Eng. Inform., 44(2020), art. No. 101057. doi: 10.1016/j.aei.2020.101057
|
[96] |
Y.H. Niu, H.Y. Cheng, S.C. Wu, J.L. Sun, and J.X. Wang, Rheological properties of cemented paste backfill and the construction of a prediction model, Case Stud. Constr. Mater., 16(2022), art. No. e01140.
|
[97] |
W.E. Worrall and S. Tuliani, Viscosity changes during the ageing of clay-water suspensions, Trans. Brit. Ceram. Soc., 63(1964), p. 167.
|
[98] |
E.A. Toorman, Modelling the thixotropic behaviour of dense cohesive sediment suspensions, Rheol. Acta, 36(1997), No. 1, p. 56. doi: 10.1007/BF00366724
|
[99] |
N. Roussel, A thixotropy model for fresh fluid concretes: Theory, validation and applications, Cem. Concr. Res., 36(2006), No. 10, p. 1797. doi: 10.1016/j.cemconres.2006.05.025
|
[100] |
L.F. Zhang, H.J. Wang, A.X. Wu, B. Klein, and X.J. Zhang, A constitutive model for thixotropic cemented tailings backfill pastes, J. Non-Newton. Fluid Mech., 295(2021), art. No. 104548. doi: 10.1016/j.jnnfm.2021.104548
|
[101] |
R.J. Flatt and P. Bowen, Yodel: A yield stress model for suspensions, J. Am. Ceram. Soc., 89(2006), No. 4, p. 1244. doi: 10.1111/j.1551-2916.2005.00888.x
|
[102] |
Z.B. Peng, E. Doroodchi, B. Moghtaderi, and G.M. Evans, A DEM-based analysis of the influence of aggregate structure on suspension shear yield stress, Adv. Powder Technol., 23(2012), No. 4, p. 437. doi: 10.1016/j.apt.2012.03.009
|
[103] |
P. Coussot, Q.D. Nguyen, H.T. Huynh, and D. Bonn, Viscosity bifurcation in thixotropic, yielding fluids, J. Rheol., 46(2002), No. 3, p. 573. doi: 10.1122/1.1459447
|
[104] |
P.C.F. Møller, J. Mewis, and D. Bonn, Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice, Soft Matter, 2(2006), No. 4, p. 274. doi: 10.1039/b517840a
|