留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  671
  • HTML全文浏览量:  257
  • PDF下载量:  48
  • 被引次数: 0
Liang Li, Yanxin Qiao, Lianmin Zhang, Aili Ma, Enobong Felix Daniel, Rongyao Ma, Jian Chen, and Yugui Zheng, Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1338-1352. https://doi.org/10.1007/s12613-023-2602-0
Cite this article as:
Liang Li, Yanxin Qiao, Lianmin Zhang, Aili Ma, Enobong Felix Daniel, Rongyao Ma, Jian Chen, and Yugui Zheng, Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1338-1352. https://doi.org/10.1007/s12613-023-2602-0
引用本文 PDF XML SpringerLink
研究论文

空蚀引起的表面损伤对304L不锈钢点蚀和钝化行为的影响


  • 通讯作者:

    乔岩欣    E-mail: yxqiao@just.edu.cn

    张连民    E-mail: lmzhang14s@imr.ac.cn

    马荣耀    E-mail: ryma14b@imr.ac.cn

文章亮点

  • (1) 发现了空蚀引起的表面损伤对304L不锈钢的点蚀和再钝化行为有显著影响。
  • (2) 借助电化学噪声揭示了不同程度表面损伤对点蚀和再钝化行为的演化规律。
  • (3) 阐明了空蚀对304L不锈钢点蚀和钝化之间的竞争作用机制。
  • 空蚀是过流部件最常见的失效形式,主要由于高速流动液体中气泡坍塌产生的冲击波和微射流对材料表面造成的频繁冲击破坏。材料的点蚀和钝化行为与空蚀的损伤程度密切相关。在腐蚀性介质中,粗糙的表面有利于形成稳态点蚀。同时,粗糙的表面会增强去钝化效果,弱化材料的钝化性能,导致材料的耐腐蚀性能恶化。然而,关于空蚀引起的表面损伤对材料的点蚀和钝化行为的影响尚未有系统研究。本文采用电化学噪声和恒电位极化技术研究了304L不锈钢在3.5wt% NaCl溶液中空蚀不同时间后的点蚀和钝化行为。研究结果表明:在空蚀孕育期内,钝化行为占主导地位, 304L不锈钢的表面开始存在亚稳态点蚀的萌生;在空蚀上升期,304L不锈钢经历了从钝化到去钝化的转变,导致亚稳态点蚀和稳态点蚀的大量生长;在空蚀的稳定期,304L不锈钢的去钝化行为占主导地位,材料表面出现严重的局部腐蚀。本研究阐明了空蚀诱导的表面损伤对材料点蚀和钝化行为的影响规律,有助于更深入理解不锈钢的空蚀损伤机制。
  • Research Article

    Effect of surface damage induced by cavitation erosion on pitting and passive behaviors of 304L stainless steel

    + Author Affiliations
    • The corrosion behavior of 304L stainless steel (SS) in 3.5wt% NaCl solution after different cavitation erosion (CE) times was mainly evaluated using electrochemical noise and potentiostatic polarization techniques. It was found that the antagonism effect resulting in the passivation and depassivation of 304L SS had significant distinctions at different CE periods. The passive behavior was predominant during the incubation period of CE where the metastable pitting initiated at the surface of 304L SS. Over the rising period of CE, the 304L SS experienced a transition from passivation to depassivation, leading to the massive growth of metastable pitting and stable pitting. The depassivation of 304L SS was found to be dominant at the stable period of CE where serious localized corrosion occurred.
    • loading
    • [1]
      H.J. Zhang, X.Y. Chen, Y.F. Gong, Y. Tian, A. McDonald, and H. Li, In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings, Ultrason. Sonochem., 60(2020), art. No. 104760. doi: 10.1016/j.ultsonch.2019.104760
      [2]
      Y.X. Qiao, J. Chen, H.L. Zhou, et al., Effect of solution treatment on cavitation erosion behavior of high-nitrogen austenitic stainless steel, Wear, 424-425(2019), p. 70. doi: 10.1016/j.wear.2019.01.098
      [3]
      X.W. Luo, B. Ji, and Y. Tsujimoto, A review of cavitation in hydraulic machinery, J. Hydrodyn., 28(2016), No. 3, p. 335. doi: 10.1016/S1001-6058(16)60638-8
      [4]
      S. Hong, Y.P. Wu, J.F. Zhang, Y.G. Zheng, Y. Zheng, and J.R. Lin, Synergistic effect of ultrasonic cavitation erosion and corrosion of WC–CoCr and FeCrSiBMn coatings prepared by HVOF spraying, Ultrason. Sonochem., 31(2016), p. 563. doi: 10.1016/j.ultsonch.2016.02.011
      [5]
      K. Selvam, P. Mandal, H.S. Grewal, and H.S. Arora, Ultrasonic cavitation erosion–corrosion behavior of friction stir processed stainless steel, Ultrason. Sonochem., 44(2018), p. 331. doi: 10.1016/j.ultsonch.2018.02.041
      [6]
      Y.X. Qiao, Z.H. Tian, X. Cai, et al., Cavitation erosion behaviors of a nickel-free high-nitrogen stainless steel, Tribol. Lett., 67(2019), No. 1, p. 1. doi: 10.1007/s11249-018-1118-7
      [7]
      M. Sabzi, S.M. Far, and S.M. Dezfuli, Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process, Int. J. Miner. Metall. Mater., 25(2018), No. 12, p. 1431. doi: 10.1007/s12613-018-1697-1
      [8]
      S.M. Anijdan, G. Arab, M. Sabzi, M. Sadeghi, A.R. Eivani, and H, R. Jafarian, Sensitivity to hydrogen induced cracking, and corrosion performance of an API X65 pipeline steel in H2S containing environment: Influence of heat treatment and its subsequent microstructural changes, J. Mater. Res. Technol., 15(2021), p. 1. doi: 10.1016/j.jmrt.2021.07.118
      [9]
      M. Sabzi, S.M. Dezfuli, and Z. Balak, Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni–P nanocomposite coating enhanced by zirconia nanoparticles, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1020. doi: 10.1007/s12613-019-1805-x
      [10]
      M. Sabzi, S. Mersagh Dezfuli, M. Asadian, A. Tafi, and A. Mahaab, Study of the effect of temperature on corrosion behavior of galvanized steel in seawater environment by using potentiodynamic polarization and EIS methods, Mater. Res. Express, 6(2019), No. 7, art. No. 076508. doi: 10.1088/2053-1591/ab10ad
      [11]
      Y.X. Qiao, X.Y. Wang, L.L. Yang, et al., Effect of aging treatment on microstructure and corrosion behavior of a Fe-18Cr-15Mn-0.66N stainless steel, J. Mater. Sci. Technol., 107(2022), p. 197. doi: 10.1016/j.jmst.2021.06.079
      [12]
      Y.W. Tang, N.W. Dai, J. Wu, Y.M. Jiang, and J. Li, Effect of surface roughness on pitting corrosion of 2205 duplex stainless steel investigated by electrochemical noise measurements, Materials, 12(2019), No. 5, art. No. 738. doi: 10.3390/ma12050738
      [13]
      T. Zhang, Y.W. Shao, G.Z. Meng, and F.H. Wang, Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution, Electrochim. Acta, 53(2007), No. 2, p. 561. doi: 10.1016/j.electacta.2007.07.014
      [14]
      L. Calabrese, L. Bonaccorsi, M. Galeano, E. Proverbio, D. Di Pietro, and F. Cappuccini, Identification of damage evolution during SCC on 17-4 PH stainless steel by combining electrochemical noise and acoustic emission techniques, Corros. Sci., 98(2015), p. 573. doi: 10.1016/j.corsci.2015.05.063
      [15]
      S. Peng, J. Xu, Z.Y. Li, S.Y. Jiang, Z.H. Xie, and P. Munroe, Electrochemical noise analysis of cavitation erosion corrosion resistance of NbC nanocrystalline coating in a 3.5wt% NaCl solution, Surf. Coat. Technol., 415(2021), art. No. 127133. doi: 10.1016/j.surfcoat.2021.127133
      [16]
      Z. Zhang, Z.Y. Zhao, P.K. Bai, et al., In-situ monitoring of pitting corrosion of AZ31 magnesium alloy by combining electrochemical noise and acoustic emission techniques, J. Alloys Compd., 878(2021), art. No. 160334. doi: 10.1016/j.jallcom.2021.160334
      [17]
      R.J.K. Wood, J.A. Wharton, A.J. Speyer, and K.S. Tan, Investigation of erosion–corrosion processes using electrochemical noise measurements, Tribol. Int., 35(2002), No. 10, p. 631. doi: 10.1016/S0301-679X(02)00054-3
      [18]
      F. Almeraya-Calderón, F. Estupiñán, R.P. Zambrano, et al., Electrochemical noise transient analysis for 316 and duplex 2205 stainless steels in NaCl and FeCl, Rev. Metall., 48(2012), No. 2, p. 147. doi: 10.3989/revmetalm.1166
      [19]
      Z. Zhang and X.Q. Wu, Correlated pitting stages of 304 stainless steel with recurrence quantification analysis of electrochemical noise, Mater. Corros., 70(2019), No. 2, p. 197. doi: 10.1002/maco.201810318
      [20]
      J.M. Sanchez-Amaya, R.A. Cottis, and F.J. Botana, Shot noise and statistical parameters for the estimation of corrosion mechanisms, Corros. Sci., 47(2005), No. 12, p. 3280. doi: 10.1016/j.corsci.2005.05.047
      [21]
      R.M. Fernández-Domene, E. Blasco-Tamarit, D.M. García-García, and J. García-Antón, Repassivation of the damage generated by cavitation on UNS N08031 in a LiBr solution by means of electrochemical techniques and Confocal Laser Scanning Microscopy, Corros. Sci., 52(2010), No. 10, p. 3453. doi: 10.1016/j.corsci.2010.06.018
      [22]
      L.L. Li, Z.B. Wang, and Y.G. Zheng, Interaction between pitting corrosion and critical flow velocity for erosion–corrosion of 304 stainless steel under jet slurry impingement, Corros. Sci., 158(2019), art. No. 108084. doi: 10.1016/j.corsci.2019.07.008
      [23]
      A. Aballe, M. Bethencourt, F.J. Botana, and M. Marcos, Wavelet transform-based analysis for electrochemical noise, Electrochem. Commun., 1(1999), No. 7, p. 266. doi: 10.1016/S1388-2481(99)00053-3
      [24]
      C. Cai, Z. Zhang, F.H. Cao, Z.N. Gao, J.Q. Zhang, and C.N. Cao, Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique, J. Electroanal. Chem., 578(2005), No. 1, p. 143. doi: 10.1016/j.jelechem.2004.12.032
      [25]
      J. Li, C.W. Du, Z.Y. Liu, X.G. Li, and M. Liu, Effect of microstructure on the corrosion resistance of 2205 duplex stainless steel. Part 2: Electrochemical noise analysis of corrosion behaviors of different microstructures based on wavelet transform, Constr. Build. Mater., 189(2018), p. 1294. doi: 10.1016/j.conbuildmat.2018.07.097
      [26]
      D.H. Xia and Y. Behnamian, Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 51(2015), No. 7, p. 593. doi: 10.1134/S1023193515070071
      [27]
      C.G. Wang, L.P. Wu, F. Xue, et al., Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1876. doi: 10.1016/j.jmst.2018.01.015
      [28]
      A. Valor, F. Caleyo, L. Alfonso, D. Rivas, and J.M. Hallen, Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits, Corros. Sci., 49(2007), No. 2, p. 559. doi: 10.1016/j.corsci.2006.05.049
      [29]
      K.H. Na and S.I. Pyun, Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis, Corros. Sci., 50(2008), No. 1, p. 248. doi: 10.1016/j.corsci.2007.05.028
      [30]
      J.J. Park and S.I. Pyun, Stochastic approach to the pit growth kinetics of Inconel alloy 600 in Cl ion-containing thiosulphate solution at temperatures 25–150°C by analysis of the potentiostatic current transients, Corros. Sci., 46(2004), No. 2, p. 285. doi: 10.1016/S0010-938X(03)00158-6
      [31]
      G. Engelhardt and D.D. Macdonald, Unification of the deterministic and statistical approaches for predicting localized corrosion damage. I. Theoretical foundation, Corros. Sci., 46(2004), No. 11, p. 2755. doi: 10.1016/j.corsci.2004.03.014
      [32]
      Y.W. Shao, C. Jia, G.Z. Meng, T. Zhang, and F.H. Wang, The role of a zinc phosphate pigment in the corrosion of scratched epoxy-coated steel, Corros. Sci., 51(2009), No. 2, p. 371. doi: 10.1016/j.corsci.2008.11.015
      [33]
      A.R. Trueman, Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements, Corros. Sci., 47(2005), No. 9, p. 2240. doi: 10.1016/j.corsci.2004.09.021
      [34]
      ASTM International, ASTM G32-10: Standard Test Method for Cavitation Erosion Using Vibratory Apparatus. ASTM International, West Conshohocken, 2010.
      [35]
      Z.X. Li, L.M. Zhang, A.L. Ma, et al., Comparative study on the cavitation erosion behavior of two different rolling surfaces on 304 stainless steel, Tribol. Int., 159(2021), art. No. 106994. doi: 10.1016/j.triboint.2021.106994
      [36]
      L.M. Zhang, Z.X. Li, J.X. Hu, et al., Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion, Tribol. Int., 155(2021), art. No. 106752. doi: 10.1016/j.triboint.2020.106752
      [37]
      Y.X. Qiao, S. Wang, B. Liu, Y.G. Zheng, L.H. Bing, and Z.H. Jiang, Synergistic effect of corrosionand cavitation erosion of high nitrogen stainless steel, Acta Metall. Sin., 52(2016), No. 2, p. 2330. doi: 10.11900/0412.1961.2015.00282
      [38]
      J. Talonen and H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater., 55(2007), No. 18, p. 6108. doi: 10.1016/j.actamat.2007.07.015
      [39]
      S. Eftekhari, H.S. Gugtapeh, and M. Rezaei, Effect of meat extract as an eco-friendly inhibitor on corrosion behavior of mild steel: Electrochemical noise analysis based on shot noise and stochastic theory, Constr. Build. Mater., 292(2021), art. No. 123423. doi: 10.1016/j.conbuildmat.2021.123423
      [40]
      Z. Zhang, X.Q. Wu, and J.B. Tan, Laboratory-scale identification of corrosion mechanisms by a pattern recognition system based on electrochemical noise measurements, J. Electrochem. Soc., 166(2019), No. 12, p. C284. doi: 10.1149/2.0761912jes
      [41]
      M.J. Bahrami, M. Shahidi, and S.M.A. Hosseini, Comparison of electrochemical current noise signals arising from symmetrical and asymmetrical electrodes made of Al alloys at different pH values using statistical and wavelet analysis. Part I: Neutral and acidic solutions, Electrochim. Acta, 148(2014), p. 127. doi: 10.1016/j.electacta.2014.10.031
      [42]
      L. Liu, Y. Li, and F.H. Wang, Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis, Electrochim. Acta, 54(2008), No. 2, p. 768. doi: 10.1016/j.electacta.2008.06.076
      [43]
      J.M. Jáquez-Muñoz, C. Gaona-Tiburcio, J. Chacón-Nava, et al., Electrochemical corrosion of titanium and titanium alloys anodized in H2SO4 and H3PO4 solutions, Coatings, 12(2022), No. 3, art. No. 325. doi: 10.3390/coatings12030325
      [44]
      R.A. Cottis, M.A.A. Al-Awadhi, H. Al-Mazeedi, and S. Turgoose, Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 46(2001), No. 24-25, p. 3665. doi: 10.1016/S0013-4686(01)00645-4
      [45]
      H.A.A. Al-Mazeedi and R.A. Cottis, A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 49(2004), No. 17-18, p. 2787. doi: 10.1016/j.electacta.2004.01.040
      [46]
      J.M. Sánchez-Amaya, M. Bethencourt, L. González-Rovira, and F.J. Botana, Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments, Electrochim. Acta, 52(2007), No. 23, p. 6569. doi: 10.1016/j.electacta.2007.04.094
      [47]
      M. Sabzi, A.H. Jozani, F. Zeidvandi, M. Sadeghi, and S.M. Dezfuli, Effect of 2-mercaptobenzothiazole concentration on sour-corrosion behavior of API X60 pipeline steel: Electrochemical parameters and adsorption mechanism, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 271. doi: 10.1007/s12613-020-2156-3
      [48]
      S.H.M. Anijdan, M. Sabzi, N. Park, and U. Lee, Sour corrosion performance and sensitivity to hydrogen induced cracking in the X70 pipeline steel: Effect of microstructural variation and pearlite percentage, Int. J. Press. Vessels Pip., 199(2022), art. No. 104759. doi: 10.1016/j.ijpvp.2022.104759
      [49]
      T.S. Li, L. Liu, B. Zhang, et al., Passive behavior of a bulk nanostructured 316L austenitic stainless steel consisting of nanometer-sized grains with embedded nano-twin bundles, Corros. Sci., 85(2014), p. 331. doi: 10.1016/j.corsci.2014.04.039
      [50]
      G.T. Burstein and P.I. Marshall, The coupled kinetics of film growth and dissolution of stainless steel repassivating in acid solutions, Corros. Sci., 24(1984), No. 5, p. 449. doi: 10.1016/0010-938X(84)90070-2
      [51]
      S.I. Pyun and E.J. Lee, Effect of halide ion and applied potential on repassivation behaviour of Al–1wt%Si–0.5wt%Cu alloy, Electrochim. Acta, 40(1995), No. 12, p. 1963. doi: 10.1016/0013-4686(94)00309-O
      [52]
      H. Luong and M.R. Hill, The effects of laser peening on high-cycle fatigue in 7085-T7651 aluminum alloy, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 208. doi: 10.1016/j.msea.2007.05.024
      [53]
      O. Takakuwa and H. Soyama, Effect of residual stress on the corrosion behavior of austenitic stainless steel, Adv. Chem. Eng. Sci., 5(2015), No. 1, p. 62. doi: 10.4236/aces.2015.51007
      [54]
      A.Q. Lü, Y. Zhang, Y. Li, G. Liu, Q.H. Zang, and C.M. Liu, Effect of nanocrystalline and twin boundaries on corrosion behavior of 316l stainless steel using smat, Acta Metall. Sin. Engl. Lett., 19(2006), No. 3, p. 183. doi: 10.1016/S1006-7191(06)60042-2
      [55]
      A.Y. Chen, W.F. Hu, D. Wang, et al., Improving the intergranular corrosion resistance of austenitic stainless steel by high density twinned structure, Scripta Mater., 130(2017), p. 264. doi: 10.1016/j.scriptamat.2016.11.032
      [56]
      Q.S. Yang, B. Jiang, Q. Xiang, S.Q. Luo, X.W. Yu, and F.S. Pan, Microstructure evolution and corrosion performance of AZ31 magnesium alloy sheets, Rare Met. Mater. Eng., 45(2016), No. 7, p. 1674. doi: 10.1016/S1875-5372(16)30138-2
      [57]
      L. Peguet, B. Malki, and B. Baroux, Influence of cold working on the pitting corrosion resistance of stainless steels, Corros. Sci., 49(2007), No. 4, p. 1933. doi: 10.1016/j.corsci.2006.08.021
      [58]
      Z.X. Li, L.M. Zhang, I.I. Udoh, A.L. Ma, and Y.G. Zheng, Deformation-induced martensite in 304 stainless steel during cavitation erosion: Effect on passive film stability and the interaction between cavitation erosion and corrosion, Tribol. Int., 167(2022), art. No. 107422. doi: 10.1016/j.triboint.2021.107422
      [59]
      E. Hutli, M. Nedeljkovic, and A. Bonyár, Controlled modification of the surface morphology and roughness of stainless steel 316 by a high speed submerged cavitating water jet, Appl. Surf. Sci., 458(2018), p. 293. doi: 10.1016/j.apsusc.2018.07.007
      [60]
      T. Balusamy, T.S.N. Sankara Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee, Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, Corros. Sci., 74(2013), p. 332. doi: 10.1016/j.corsci.2013.04.056
      [61]
      X.N. Yi, L.J. Zhang, A.L. Ma, et al., Study on anisotropic oxide formation rate in the initial corrosion stage of 90Cu10Ni alloy in alkaline NaCl solution by experiments and first-principles calculation, Corros. Sci., 209(2022), art. No. 110768. doi: 10.1016/j.corsci.2022.110768
      [62]
      V. Pandey, J.K. Singh, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, Influence of ultrasonic shot peening on corrosion behavior of 7075 aluminum alloy, J. Alloys Compd., 723(2017), p. 826. doi: 10.1016/j.jallcom.2017.06.310

    Catalog


    • /

      返回文章
      返回