留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  654
  • HTML全文浏览量:  204
  • PDF下载量:  41
  • 被引次数: 0
Jun Xu, Jun Zhao, Bin Jiang, Wenjun Liu, Hong Yang, Xintao Li, Yuehua Kang, Nan Zhou, Kaihong Zheng, and Fusheng Pan, Understanding the superior mechanical properties of Mg–3Al–Zn alloy sheets: Role of multi-type unique textures, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1104-1112. https://doi.org/10.1007/s12613-023-2603-z
Cite this article as:
Jun Xu, Jun Zhao, Bin Jiang, Wenjun Liu, Hong Yang, Xintao Li, Yuehua Kang, Nan Zhou, Kaihong Zheng, and Fusheng Pan, Understanding the superior mechanical properties of Mg–3Al–Zn alloy sheets: Role of multi-type unique textures, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1104-1112. https://doi.org/10.1007/s12613-023-2603-z
引用本文 PDF XML SpringerLink
研究论文

优异力学性能的AZ31镁合金挤压板材:多类型织构的作用

  • 通讯作者:

    徐军    E-mail: xujun5@126.com

    蒋斌    E-mail: jiangbinrong@cqu.edu.cn

文章亮点

  • (1) 横向梯度挤压工艺制备多类型织构镁合金板材。
  • (2) 由于在挤出工艺中引入了沿板材横向的流速和沿挤出方向的流速差,基极沿板材横向从边缘到中心逐渐偏离法向方向。
  • (3) 由于横向梯度挤压板材在拉伸变形过程中,基面<a>滑移和拉伸孪晶容易被激活,板材具有优异的力学性能。
  • 采用横向梯度挤压(TGE)和传统挤压(CE)工艺制备Mg–3Al–1Zn(AZ31)镁合金板材,系统地研究了镁合金在挤压工艺中流变和动态再结晶行为,并对挤压AZ31镁合金板材的微观组织、织构和力学性能进行了分析。结果表明,由于在横向梯度挤压工艺中引入了沿板材横向额外流速和沿挤压方向流速差,板材具有细小晶粒的微观组织和多种类型的织构。板材横向从边缘到中心基极逐渐偏离法线方向,在板材中心区域达到最大倾角65°。此外,除了横向梯度挤压板材中心区域外,板材基极沿挤压方向向横向偏转40°–63°。与传统挤压板材相比,横向梯度挤压板材具有高的延展性和应变硬化指数(n值),低的屈服强度和Lankford值(r值)。由于横向梯度挤压板材在变形过程中基面<a>滑移和拉伸孪晶容易被激活,板材延伸率最高可达41%,屈服强度低至86.5 MPa。
  • Research Article

    Understanding the superior mechanical properties of Mg–3Al–Zn alloy sheets: Role of multi-type unique textures

    + Author Affiliations
    • Mg–3Al–1Zn (AZ31) sheets were produced by transverse gradient extrusion (TGE) process. The flow behavior and dynamic recrystallization during extrusion were systematically analyzed. The microstructures, textures, and mechanical behavior of extruded AZ31 sheet were also analyzed and compared with conventional extruded (CE) sheet. The results showed that fine grain structure and multi-type unique textures were formed in TGE sheet because of the generation of extra flow velocity along transverse direction (TD) and flow velocity gradient along extrusion direction (ED) during extrusion. The basal poles gradually deviated away normal direction (ND) from edge to center of the TGE sheet along TD, and the largest inclination angle at center region reached around 65°. Furthermore, the basal poles inclined from ED to TD 40°–63°, except for the center region of TGE sheet. The TGE sheet presented higher ductility and strain hardening exponent (n-value), but lower yield strength and Lankford value (r-value) in comparison with the CE sheet. Both the basal <a> slip and tensile twins were easy to be activated during deformation, and the largest elongation of 41% and the lowest yield strength of 86.5 MPa were obtained for the ED-center sample in the TGE sheet.
    • loading
    • [1]
      N. Li, C. Wang, M.A. Monclús, L. Yang, and J.M. Molina-Aldareguia, Solid solution and precipitation strengthening effects in basal slip, extension twinning and pyramidal slip in Mg–Zn alloys, Acta Mater., 221(2021), art. No. 117374. doi: 10.1016/j.actamat.2021.117374
      [2]
      F.Y. Liu, R.L. Xin, M.X. Zhang, M.T. Pérez-Prado, and Q. Liu, Evaluating the orientation relationship of prismatic precipitates generated by detwinning in Mg alloys, Acta Mater., 195(2020), p. 263. doi: 10.1016/j.actamat.2020.05.031
      [3]
      J.Q. Hao, J.S. Zhang, H.X. Wang, W.L. Cheng, and Y. Bai, Microstructure and mechanical properties of Mg–Zn–Y–Mn magnesium alloys with different Zn/Y atomic ratio, J. Mater. Res. Technol., 19(2022), p. 1650. doi: 10.1016/j.jmrt.2022.05.153
      [4]
      A.V. Koltygin, V.E. Bazhenov, I.V. Plisetskaya, et al., Influence of Zr and Mn additions on microstructure and properties of Mg–2.5wt%Cu–Xwt%Zn (X = 2.5, 5 and 6.5) alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1733. doi: 10.1007/s12613-021-2369-0
      [5]
      M.Z. Bian, X.S. Huang, and Y. Chino, Substantial improvement in cold formability of concentrated Mg–Al–Zn–Ca alloy sheets by high temperature final rolling, Acta Mater., 220(2021), art. No. 117328. doi: 10.1016/j.actamat.2021.117328
      [6]
      J. Zheng, Z. Chen, Z.M. Yan, Z.M. Zhang, Q. Wang, and Y. Xue, Preparation of ultra-high strength Mg–Gd–Y–Zn–Zr alloy by pre-ageing treatment prior to extrusion, J. Alloys Compd., 894(2022), art. No. 162490. doi: 10.1016/j.jallcom.2021.162490
      [7]
      H. Pang, J. Bao, Q.A. Li, et al., Effect of Sm on microstructures and mechanical properties of Mg–Gd(–Sm)–Zr alloys by hot extrusion and aging treatment, J. Mater. Res. Technol., 19(2022), p. 3877. doi: 10.1016/j.jmrt.2022.06.128
      [8]
      Z.K. Deng, X.P. Li, S.Z. Wang, X.H. Li, D.X. Chen, and X.F. Xiao, Texture tailoring of a cold-rolled Mg–Zn–Gd alloy by electropulse treatment: The effect of electropulse and Gd element, Mater. Charact., 190(2022), art. No. 112046. doi: 10.1016/j.matchar.2022.112046
      [9]
      Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [10]
      T. Tsuru, H. Somekawa, and D.C. Chrzan, Interfacial segregation and fracture in Mg-based binary alloys: Experimental and first-principles perspective, Acta Mater., 151(2018), p. 78. doi: 10.1016/j.actamat.2018.03.061
      [11]
      J. Koike, T. Kobayashi, T. Mukai, et al., The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Mater., 51(2003), No. 7, p. 2055. doi: 10.1016/S1359-6454(03)00005-3
      [12]
      J. Zhao, B. Jiang, Y. Song, et al., Simultaneous improvement of strength and ductility by Mn addition in extruded Mg–Gd–Zn alloy, Trans. Nonferrous Met. Soc. China, 32(2022), No. 5, p. 1460. doi: 10.1016/S1003-6326(22)65886-2
      [13]
      Y. Wang and H. Choo, Influence of texture on Hall-Petch relationships in an Mg alloy, Acta Mater., 81(2014), p. 83. doi: 10.1016/j.actamat.2014.08.023
      [14]
      S. Basu, E. Dogan, B. Kondori, I. Karaman, and A.A. Benzerga, Towards designing anisotropy for ductility enhancement: A theory-driven investigation in Mg-alloys, Acta Mater., 131(2017), p. 349. doi: 10.1016/j.actamat.2017.02.046
      [15]
      D.D. Zhang, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen, Effects of trace Ag on precipitation behavior and mechanical properties of extruded Mg–Gd–Y–Zr alloys, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3394. doi: 10.1016/S1003-6326(21)65737-0
      [16]
      Y.J. Ma, C.M. Liu, S.N. Jiang, Y.C. Wan, and Z.Y. Chen, Microstructure, mechanical properties and damping capacity of as-extruded Mg–1.5Gd alloys containing rare-earth textures, Mater. Charact., 189(2022), art. No. 111969. doi: 10.1016/j.matchar.2022.111969
      [17]
      K.B. Nie, X.J. Wang, K.K. Deng, F.J. Xu, K. Wu, and M.Y. Zheng, Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions, J. Alloys Compd., 617(2014), p. 979. doi: 10.1016/j.jallcom.2014.08.148
      [18]
      M. Pérez-Prado, J.A. del Valle, and O.A. Ruano, Achieving high strength in commercial Mg cast alloys through large strain rolling, Mater. Lett., 59(2005), No. 26, p. 3299. doi: 10.1016/j.matlet.2005.04.061
      [19]
      X. Che, B.B. Dong, Q. Wang, et al., The effect of processing parameters on the microstructure and texture evolution of a cup-shaped AZ80 Mg alloy sample manufactured by the rotating backward extrusion, J. Alloys Compd., 854(2021), art. No. 156264. doi: 10.1016/j.jallcom.2020.156264
      [20]
      J.W. Kang, X.F. Sun, K.K. Deng, F.J. Xu, X. Zhang, and Y. Bai, High strength Mg–9Al serial alloy processed by slow extrusion, Mater. Sci. Eng. A, 697(2017), p. 211. doi: 10.1016/j.msea.2017.05.017
      [21]
      J. Xu, B. Jiang, Y.H. Kang, et al., Tailoring microstructure and texture of Mg–3Al–1Zn alloy sheets through curve extrusion process for achieving low planar anisotropy, J. Mater. Sci. Technol., 113(2022), p. 48. doi: 10.1016/j.jmst.2021.09.023
      [22]
      H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 490. doi: 10.1007/s12613-021-2275-5
      [23]
      X. Zhao, S.C. Li, Y.S. Zheng, et al., The microstructure evolution, texture weakening mechanism and mechanical properties of AZ80 Mg alloy processed by repetitive upsetting-extrusion with reduced deformation temperature, J. Alloys Compd., 883(2021), art. No. 160871. doi: 10.1016/j.jallcom.2021.160871
      [24]
      X. Li, C. Liu, J.S. Wang, and C. Zhang, Tailoring the strength and formability of Mg alloys through rare earth element additions (Gd and Dy) and dynamic recrystallizations, Mater. Today Commun., 28(2021), art. No. 102627. doi: 10.1016/j.mtcomm.2021.102627
      [25]
      A. Imandoust, C.D. Barrett, T. Al-Samman, K.A. Inal, and H.E. Kadiri, A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys, J. Mater. Sci., 52(2017), No. 1, p. 1. doi: 10.1007/s10853-016-0371-0
      [26]
      G. Zhou, Y. Yang, L. Sun, et al., Tailoring the microstructure, mechanical properties and damping capacities of Mg–4Li–3Al–0.3Mn alloy via hot extrusion, J. Mater. Res. Technol., 19(2022), p. 4197. doi: 10.1016/j.jmrt.2022.06.100
      [27]
      W.X. Fan, Y. Bai, G.Y. Li, X.Y. Chang, and H. Hao, Enhanced mechanical properties and formability of hot-rolled Mg–Zn–Mn alloy by Ca and Sm alloying, Trans. Nonferrous Met. Soc. China, 32(2022), No. 4, p. 1119. doi: 10.1016/S1003-6326(22)65860-6
      [28]
      T. Nakata, C. Xu, and S. Kamado, Formation of anomalous twinning and its effect on texture development in a cold-rolled Mg–Zn–Ca alloy sheet, Mater. Charact., 181(2021), art. No. 111507. doi: 10.1016/j.matchar.2021.111507
      [29]
      J. Zhao, B. Jiang, Q.H. Wang, et al., Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1380. doi: 10.1007/s12613-021-2340-0
      [30]
      J. Xu, J.F. Song, B. Jiang, et al., Effect of effective strain gradient on texture and mechanical properties of Mg–3Al–1Zn alloy sheets produced by asymmetric extrusion, Mater. Sci. Eng. A, 706(2017), p. 172. doi: 10.1016/j.msea.2017.09.004
      [31]
      Q.H. Wang, J.F. Song, B. Jiang, et al., An investigation on microstructure, texture and formability of AZ31 sheet processed by asymmetric porthole die extrusion, Mater. Sci. Eng. A, 720(2018), p. 85. doi: 10.1016/j.msea.2018.02.055
      [32]
      J. Xu, W.J. Liu, B. Jiang, et al., Forming novel texture and enhancing the formability in Mg–3Al–Zn alloy sheets fabricated by transverse gradient extrusion, J. Mater. Res. Technol., 18(2022), p. 3143. doi: 10.1016/j.jmrt.2022.03.165
      [33]
      Z.J. Yu, C. Xu, J. Meng, X.H. Zhang, and S. Kamado, Microstructure evolution and mechanical properties of as-extruded Mg–Gd–Y–Zr alloy with Zn and Nd additions, Mater. Sci. Eng. A, 713(2018), p. 234. doi: 10.1016/j.msea.2017.12.070
      [34]
      C.Y. Zhao, X.H. Chen, F.S. Pan, S.Y. Gao, D. Zhao, and X.F. Liu, Effect of Sn content on strain hardening behavior of as-extruded Mg–Sn alloys, Mater. Sci. Eng. A, 713(2018), p. 244. doi: 10.1016/j.msea.2017.12.074
      [35]
      Q. Kang, H.T. Jiang, Y. Zhang, Z. Xu, H. Li, and Z.H. Xia, Effect of various Ca content on microstructure and fracture toughness of extruded Mg–2Zn alloys, J. Alloys Compd., 742(2018), p. 1019. doi: 10.1016/j.jallcom.2017.11.276
      [36]
      Y. Liu, J.B. Wen, H. Li, and J.G. He, Effects of extrusion parameters on the microstructure, corrosion resistance, and mechanical properties of biodegradable Mg–Zn–Gd–Y–Zr alloy, J. Alloys Compd., 891(2022), art. No. 161964. doi: 10.1016/j.jallcom.2021.161964
      [37]
      L. Yan, Z.M. Zhang, Y. Xue, J. Xu, B.B. Dong, and X.B. Li, Effect of rotating shear extrusion on the microstructure, texture evolution and mechanical properties of Mg–Gd–Y–Zn–Zr alloy, J. Alloys Compd., 906(2022), art. No. 164406. doi: 10.1016/j.jallcom.2022.164406
      [38]
      P. Minárik, R. Král, J. Čížek, and F. Chmelík, Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP, Acta Mater., 107(2016), p. 83. doi: 10.1016/j.actamat.2015.12.050
      [39]
      J. Hofstetter, S. Rüedi, I. Baumgartner, et al., Processing and microstructure–property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys, Acta Mater., 98(2015), p. 423. doi: 10.1016/j.actamat.2015.07.021
      [40]
      K. Guan, R. Ma, J.H. Zhang, R.Z. Wu, Q. Yang, and J. Meng, Modifying microstructures and tensile properties of Mg–Sm based alloy via extrusion ratio, J. Magnes. Alloys, 9(2021), No. 3, p. 1098. doi: 10.1016/j.jma.2020.12.004
      [41]
      X.Z. Jin, W.C. Xu, D.B. Shan, B. Guo, and B.C. Jin, Mechanism of high-strength and ductility of Mg–RE alloy fabricated by low-temperature extrusion and aging treatment, Mater. Des., 199(2021), art. No. 109384. doi: 10.1016/j.matdes.2020.109384
      [42]
      S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown, Enhanced ductility in strongly textured magnesium produced by equal channel angular processing, Scripta Mater., 50(2004), No. 3, p. 377. doi: 10.1016/j.scriptamat.2003.10.006
      [43]
      C. He, S.W. Bai, B. Jiang, et al., Effect of Gd content on the microstructure, texture and mechanical properties of Mg–xGd–0.5Mn alloys, J. Mater. Res. Technol., 20(2022), p. 343. doi: 10.1016/j.jmrt.2022.07.034
      [44]
      Z.C. Li, J.M. Yu, D.L. Lu, et al., Synergistic effects of grain refinement and texture weakening on mechanical properties anisotropy of Mg–9Gd–4Y–2Zn–0.4Zr alloy via RUE processing, J. Mater. Res. Technol., 19(2022), p. 837. doi: 10.1016/j.jmrt.2022.05.045
      [45]
      J.S. Wei, C.M. Liu, Y.C. Wan, J.B. Shao, X.Z. Han, and G.L. Zhang, Strengthening against { $ 10\stackrel{-}{1}2 $} twinning by discontinuous and continuous precipitate in a strongly textured Mg–9Al alloy, Mater. Charact., 167(2020), art. No. 110523. doi: 10.1016/j.matchar.2020.110523
      [46]
      H.B. Yang, Y.F. Chai, B. Jiang, et al., Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1343. doi: 10.1007/s12613-021-2370-7
      [47]
      Q.H. Wang, Y.Q. Shen, B. Jiang, et al., A good balance between ductility and stretch formability of dilute Mg–Sn–Y sheet at room temperature, Mater. Sci. Eng. A, 736(2018), p. 404. doi: 10.1016/j.msea.2018.09.011
      [48]
      L. Zhang, G.S. Huang, H. Zhang, and B. Song, Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending process, J. Mater. Process. Technol., 211(2011), No. 4, p. 644. doi: 10.1016/j.jmatprotec.2010.11.019
      [49]
      J.R. Dong, D.F. Zhang, J. Sun, Q.W. Dai, and F.S. Pan, Effects of different stretching routes on microstructure and mechanical properties of AZ31B magnesium alloy sheets, J. Mater. Sci. Technol., 31(2015), No. 9, p. 935. doi: 10.1016/j.jmst.2015.07.011
      [50]
      M. Sanjari, A. Farzadfar, A.S.H. Kabir, et al., Promotion of texture weakening in magnesium by alloying and thermomechanical processing: (I) alloying, J. Mater. Sci., 49(2014), No. 3, p. 1408. doi: 10.1007/s10853-013-7826-3
      [51]
      C. Ha, J. Bohlen, X. Zhou, et al., Texture development and dislocation activities in Mg–Nd and Mg–Ca alloy sheets, Mater. Charact., 175(2021), art. No. 111044. doi: 10.1016/j.matchar.2021.111044
      [52]
      Y.B. Chun and C.H.J. Davies, Investigation of prism <a> slip in warm-rolled AZ31 alloy, Metall. Mater. Trans. A, 42(2011), No. 13, p. 4113. doi: 10.1007/s11661-011-0800-2

    Catalog


    • /

      返回文章
      返回