留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(5)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  950
  • HTML全文浏览量:  381
  • PDF下载量:  32
  • 被引次数: 0
Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng,  and Yanbing Hou, Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1965-1972. https://doi.org/10.1007/s12613-023-2604-y
Cite this article as:
Xiaomeng Li, Pengcheng Jia, Fanwen Meng, Xingyu Zhang, Yang Tang, Bo Song, Chang Gao, Liang Qin, Feng Teng,  and Yanbing Hou, Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1965-1972. https://doi.org/10.1007/s12613-023-2604-y
引用本文 PDF XML SpringerLink
研究论文

丙胺氢溴酸盐钝化高效锡基钙钛矿太阳能电池

文章亮点

  • (1) 丙胺氢溴酸盐钝化锡基钙钛矿薄膜的缺陷。
  • (2) 丙胺氢溴酸盐使器件的平均短路电流密度明显提升。
  • (3) 器件的稳定性得以提升,滞后效应可忽略不计。
  • 钙钛矿太阳能电池由于其较高的光电转换效率、简单的制造工艺和低廉的生产成本,已成为最有前途的第三代太阳能电池之一。然而,铅元素的毒性极大程度上限制了其商业价值,因此,开发低毒性的锡基器件对钙钛矿太阳能电池的商业可行性至关重要。由于卤化锡是一种更强的路易斯酸,其结晶速率极快,导致形成大量缺陷,影响锡基钙钛矿太阳能电池的器件性能。在此,将丙胺氢溴酸盐(propylamine hydrobromide, PABr)作为添加剂添加到钙钛矿前驱体溶液中,以钝化缺陷并制备更均匀、致密的钙钛矿薄膜。由于丙胺阳离子尺寸较大而无法进入钙钛矿晶格,因此,它们仅存在于晶界处以钝化表面缺陷并促进晶体在优选方向上生长。PABr添加剂通过减少缺陷引起的载流子复合,将平均短路电流密度从19.45 mA·cm−2 提高到25.47 mA·cm−2。此外,经过丙胺氢溴酸盐钝化后,器件的长期光照稳定性得到了提升,滞后效应可忽略不计,PABr的加入使光电转换效率达到9.35%。
  • Research Article

    Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells

    + Author Affiliations
    • The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells. However, because tin halide is a stronger Lewis acid, its crystallization rate is extremely fast, resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells. Herein, propylamine hydrobromide (PABr) was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films. Because propylamine cations are too large to enter the perovskite lattices, they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation. The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm−2 by reducing carrier recombination induced by defects. Furthermore, the device’s long-term illumination stability is improved after optimization, and the hysteresis effect is negligible. The addition of PABr results in a power conversion efficiency of 9.35%.
    • loading
    • Supplementary Information-10.1007s12613-023-2604-y.docx
    • [1]
      M.A. Green, Y.J. Jiang, A.M. Soufiani, and A. Ho-Baillie, Optical properties of photovoltaic organic–inorganic lead halide perovskites, J. Phys. Chem. Lett., 6(2015), No. 23, p. 4774. doi: 10.1021/acs.jpclett.5b01865
      [2]
      G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7(2014), No. 3, p. 982. doi: 10.1039/c3ee43822h
      [3]
      S.R. Wang, X. Zhang, W.K. Zhu, et al., Lewis base manipulated crystallization for efficient tin halide perovskite solar cells, Appl. Surf. Sci., 602(2022), art. No. 154393. doi: 10.1016/j.apsusc.2022.154393
      [4]
      P. You, G.J. Li, G.Q. Tang, J.P. Cao, and F. Yan, Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells, Energy Environ. Sci., 13(2020), No. 4, p. 1187. doi: 10.1039/C9EE02324K
      [5]
      M.A. Green, A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells, Nat. Photonics, 8(2014), No. 7, p. 506. doi: 10.1038/nphoton.2014.134
      [6]
      M. Pitaro, E.K. Tekelenburg, S.Y. Shao, and M.A. Loi, Tin halide perovskites: From fundamental properties to solar cells, Adv. Mater., 34(2022), No. 1, art. No. 2105844. doi: 10.1002/adma.202105844
      [7]
      S. Gu, R.X. Lin, Q.L. Han, Y. Gao, H.R. Tan, and J. Zhu, Tin and mixed lead–tin halide perovskite solar cells: Progress and their application in tandem solar cells, Adv. Mater., 32(2020), No. 27, art. No. 1907392. doi: 10.1002/adma.201907392
      [8]
      National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart [2022-08 -18]. https://www.nrel.gov/pv/cell-efficiency.html?tdsourcetag=s_pcqq_aiomsg.
      [9]
      Z.B. Que, L. Chu, S.B. Zhai, et al., Self-assembled TiO2 hole-blocking layers for efficient perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1280. doi: 10.1007/s12613-021-2361-8
      [10]
      J.P. Cao and F. Yan, Recent progress in tin-based perovskite solar cells, Energy Environ. Sci., 14(2021), No. 3, p. 1286. doi: 10.1039/D0EE04007J
      [11]
      C.C. Boyd, R. Cheacharoen, T. Leijtens, and M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics, Chem. Rev., 119(2019), No. 5, p. 3418. doi: 10.1021/acs.chemrev.8b00336
      [12]
      R.L. Milot, M.T. Klug, C.L. Davies, et al., The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films, Adv. Mater., 30(2018), No. 44, art. No. 1804506. doi: 10.1002/adma.201804506
      [13]
      T.H. Wu, X. Liu, X.H. Luo, et al., Lead-free tin perovskite solar cells, Joule, 5(2021), No. 4, p. 863. doi: 10.1016/j.joule.2021.03.001
      [14]
      W.Y. Gao, P.Z. Li, J.B. Chen, C.X. Ran, and Z.X. Wu, Interface engineering in tin perovskite solar cells, Adv. Mater. Interfaces, 6(2019), No. 24, art. No. 1901322. doi: 10.1002/admi.201901322
      [15]
      M. Aldamasy, Z. Iqbal, G.X. Li, et al., Challenges in tin perovskite solar cells, Phys. Chem. Chem. Phys., 23(2021), No. 41, p. 23413. doi: 10.1039/D1CP02596A
      [16]
      X. Zhang, S.R. Wang, W.K. Zhu, Z.Y. Cao, A.L. Wang, and F. Hao, The voltage loss in tin halide perovskite solar cells: Origins and perspectives, Adv. Funct. Mater., 32(2022), No. 8, art. No. 2108832. doi: 10.1002/adfm.202108832
      [17]
      B. Chen, S.R. Wang, X. Zhang, W.K. Zhu, Z.Y. Cao, and F. Hao, Reducing the interfacial voltage loss in tin halides perovskite solar cells, Chem. Eng. J., 445(2022), art. No. 136769. doi: 10.1016/j.cej.2022.136769
      [18]
      W.S. Yang, J.H. Noh, N.J. Jeon, et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348(2015), No. 6240, p. 1234. doi: 10.1126/science.aaa9272
      [19]
      K. Nishimura, M.A. Kamarudin, D. Hirotani, et al., Lead-free tin-halide perovskite solar cells with 13% efficiency, Nano Energy, 74(2020), art. No. 104858. doi: 10.1016/j.nanoen.2020.104858
      [20]
      M. Konstantakou and T. Stergiopoulos, A critical review on tin halide perovskite solar cells, J. Mater. Chem. A, 5(2017), No. 23, p. 11518. doi: 10.1039/C7TA00929A
      [21]
      W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, and L.S. Liao, Tin halide perovskites: Progress and challenges, Adv. Energy Mater., 10(2020), No. 13, art. No. 1902584. doi: 10.1002/aenm.201902584
      [22]
      Z.H. Zhang, Z.C. Li, L.Y. Meng, S.Y. Lien, and P. Gao, Perovskite-based tandem solar cells: Get the most out of the sun, Adv. Funct. Mater., 30(2020), No. 38, art. No. 2001904. doi: 10.1002/adfm.202001904
      [23]
      X. Liu, T.H. Wu, X.H. Luo, et al., Lead-free perovskite solar cells with over 10% efficiency and size 1 cm2 enabled by solvent-crystallization regulation in a two-step deposition method, ACS Energy Lett., 7(2022), No. 1, p. 425. doi: 10.1021/acsenergylett.1c02651
      [24]
      Z. Zhang, M.A. Kamarudin, A.K. Baranwal, et al., Indent-free vapor-assisted surface passivation strategy toward tin halide perovskite solar cells, ACS Appl. Mater. Interfaces, 14(2022), No. 31, p. 36200. doi: 10.1021/acsami.2c06046
      [25]
      A. Al-Ashouri, E. Köhnen, B. Li, et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science, 370(2020), No. 6522, p. 1300. doi: 10.1126/science.abd4016
      [26]
      X. Liu, T.H. Wu, C.Y. Zhang, Y.Q. Zhang, H. Segawa, and L.Y. Han, Interface energy-level management toward efficient tin perovskite solar cells with hole-transport-layer-free structure, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106560. doi: 10.1002/adfm.202106560
      [27]
      W. Bumrungsan, K. Hongsith, V. Yarangsi, et al., Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1963. doi: 10.1007/s12613-021-2382-3
      [28]
      Y.T. Xu, K.J. Jiang, P.C. Wang, et al., Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells, New J. Chem., 46(2022), No. 5, p. 2259. doi: 10.1039/D1NJ05178D
      [29]
      Z.S. Dai, T. Lv, J. Barbaud, et al., Stable tin perovskite solar cells developed via additive engineering, Sci. China Mater., 64(2021), No. 11, p. 2645. doi: 10.1007/s40843-021-1670-0
      [30]
      X. Liu, Y.B. Wang, T.H. Wu, et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure, Nat. Commun., 11(2020), No. 1, art. No. 2678. doi: 10.1038/s41467-020-16561-6
      [31]
      M.M. Zhang, Z.G. Zhang, H.H. Cao, et al., Recent progress in inorganic tin perovskite solar cells, Mater. Today Energy, 23(2022), art. No. 100891. doi: 10.1016/j.mtener.2021.100891
      [32]
      G.X. Li, Z.H. Su, M. Li, et al., Ionic liquid stabilizing high-efficiency tin halide perovskite solar cells, Adv. Energy Mater., 11(2021), No. 32, art. No. 2101539. doi: 10.1002/aenm.202101539
      [33]
      X. Liu, T.H. Wu, J.Y. Chen, et al., Templated growth of FASnI3 crystals for efficient tin perovskite solar cells, Energy Environ. Sci., 13(2020), No. 9, p. 2896. doi: 10.1039/D0EE01845G
      [34]
      B.B. Yu, Z.H. Chen, Y.D. Zhu, et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%, Adv. Mater., 33(2021), No. 36, art. No. 2102055. doi: 10.1002/adma.202102055
      [35]
      H.S. Li, X.Y. Jiang, Q. Wei, et al., Low-dimensional inorganic tin perovskite solar cells prepared by templated growth, Angew. Chem. Int. Ed., 60(2021), No. 30, p. 16330. doi: 10.1002/anie.202104958
      [36]
      M.A. Kamarudin, S.R. Sahamir, K. Nishimura, et al., Suppression of defect and trap density through dimethylammonium-substituted tin perovskite solar cells, ACS Mater. Lett., 4(2022), No. 9, p. 1855. doi: 10.1021/acsmaterialslett.2c00275
      [37]
      F.D. Gu, C.B. Wang, Z.R. Zhao, et al., Tin(II) acetylacetonate as a new type of tin compensator additive for tin-based perovskite solar cells, ACS Appl. Mater. Interfaces, 13(2021), No. 37, p. 44157. doi: 10.1021/acsami.1c08208
      [38]
      Z. Zhang, M.A. Kamarudin, A.K. Baranwal, et al., Sequential passivation for lead-free tin perovskite solar cells with high efficiency, Angew. Chem. Int. Ed., 61(2022), No. 42, art. No. 202210101. doi: 10.1002/anie.202210101
      [39]
      S.R. Wang, L. Yan, W.K. Zhu, et al., Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells, Nano Energy, 99(2022), art. No. 107416. doi: 10.1016/j.nanoen.2022.107416
      [40]
      H.J. Yan, B.W. Wang, X.F. Yan, et al., Efficient passivation of surface defects by lewis base in lead-free tin-based perovskite solar cells, Mater. Today Energy, 27(2022), art. No. 101038. doi: 10.1016/j.mtener.2022.101038
      [41]
      Z. Zhang, L. Wang, A.K. Baranwal, et al., Enhanced efficiency and stability in Sn-based perovskite solar cells by trimethylsilyl halide surface passivation, J. Energy Chem., 71(2022), p. 604. doi: 10.1016/j.jechem.2022.03.028
      [42]
      E. Jokar, C.H. Chien, A. Fathi, M. Rameez, Y.H. Chang, and E.W.G. Diau, Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells, Energy Environ. Sci., 11(2018), No. 9, p. 2353. doi: 10.1039/C8EE00956B
      [43]
      C. Liu, J. Tu, X.T. Hu, et al., Enhanced hole transportation for inverted tin-based perovskite solar cells with high performance and stability, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1808059. doi: 10.1002/adfm.201808059
      [44]
      E. Jokar, H.S. Chuang, C.H. Kuan, et al., Slow passivation and inverted hysteresis for hybrid tin perovskite solar cells attaining 13.5% via sequential deposition, J. Phys. Chem. Lett., 12(2021), No. 41, p. 10106. doi: 10.1021/acs.jpclett.1c03107
      [45]
      B.H. Chang, B. Li., Z.X. Wang, et al., Efficient bulk defect suppression strategy in FASnI3 perovskite for photovoltaic performance enhancement, Adv. Funct. Mater., 32(2022), No. 12, art. No. 2107710. doi: 10.1002/adfm.202107710
      [46]
      P.J. Zhao, B.J. Kim, and H.S. Jung, Passivation in perovskite solar cells: A review, Mater. Today Energy, 7(2018), p. 267. doi: 10.1016/j.mtener.2018.01.004
      [47]
      Q.D. Tai, X.Y. Guo, G.Q. Tang, et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells, Angew. Chem. Int. Ed., 58(2019), No. 3, p. 806. doi: 10.1002/anie.201811539
      [48]
      J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, and N.G. Park, High-efficiency perovskite solar cells, Chem. Rev., 120(2020), No. 15, p. 7867. doi: 10.1021/acs.chemrev.0c00107
      [49]
      Y. Zhang, Y. Li, L. Zhang, et al., Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells, Adv. Energy Mater., 11(2021), No. 47, art. No. 2102538. doi: 10.1002/aenm.202102538
      [50]
      D.S. Yao, C.M. Zhang, S.L. Zhang, et al., 2D–3D mixed organic–inorganic perovskite layers for solar cells with enhanced efficiency and stability induced by n-propylammonium iodide additives, ACS Appl. Mater. Interfaces, 11(2019), No. 33, p. 29753. doi: 10.1021/acsami.9b06305
      [51]
      D.D. Wu, P.C. Jia, W.T. Bi, et al., Enhanced performance of tin halide perovskite solar cells by addition of hydrazine monohydrobromide, Org. Electron., 82(2020), art. No. 105728. doi: 10.1016/j.orgel.2020.105728
      [52]
      P.C. Jia, L. Qin, D. Zhao, et al., The trapped charges at grain boundaries in perovskite solar cells, Adv. Funct. Mater., 31(2021), No. 49, art. No. 2107125. doi: 10.1002/adfm.202107125
      [53]
      C.X. Ran, W.Y. Gao, J.R. Li, et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells, Joule, 3(2019), No. 12, p. 3072. doi: 10.1016/j.joule.2019.08.023

    Catalog


    • /

      返回文章
      返回