留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  524
  • HTML全文浏览量:  174
  • PDF下载量:  68
  • 被引次数: 0
Zhihao Shen, Shuming Wen, Han Wang, Yongchao Miao, Xiao Wang, Shengbing Meng, and Qicheng Feng, Effect of dissolved components of malachite and calcite on surface properties and flotation behavior, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1297-1309. https://doi.org/10.1007/s12613-023-2606-9
Cite this article as:
Zhihao Shen, Shuming Wen, Han Wang, Yongchao Miao, Xiao Wang, Shengbing Meng, and Qicheng Feng, Effect of dissolved components of malachite and calcite on surface properties and flotation behavior, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1297-1309. https://doi.org/10.1007/s12613-023-2606-9
引用本文 PDF XML SpringerLink
研究论文

孔雀石和方解石的溶解组分对表面特性及浮选行为的影响

  • 通讯作者:

    丰奇成    E-mail: fqckmust@163.com

文章亮点

  • (1) 发现了孔雀石和方解石在矿浆中的交互影响是导致两种矿物难以高效分离的重要原因。
  • (2) 系统研究了孔雀石和方解石的溶解组分对两种矿物浮选行为的影响。
  • (3) 证实了孔雀石和方解石的溶解组分对两种矿物表面特性的交互影响。
  • 通常采用硫化–黄药法对孔雀石进行回收,由于矿石中伴生方解石的存在,往往导致铜的浮选指标不理想,出现这种现象的重要原因是孔雀石和方解石的溶解组分会在两种矿物表面发生交互影响,从而影响其浮选行为。本文研究了孔雀石和方解石的溶解组分对这两种矿物的浮选行为和表面特性的影响。浮选试验表明,在孔雀石浮选矿浆中加入方解石的溶解组分后,孔雀石的回收率会降低,反之,孔雀石溶解组分的存在能够增加方解石的回收率。溶解和吸附检测、Zeta电位测定、X射线光电子能谱、傅里叶变换红外光谱和飞行时间二次离子质谱表征结果表明,方解石溶解液中的钙组分会吸附在孔雀石表面,并阻碍硫化钠与孔雀石表面进行作用,从而导致异戊基黄原酸钠在孔雀石表面难以有效吸附;同样地,孔雀石溶解液中的含铜组分会吸附在方解石表面,为硫化钠和异戊基黄原酸钠在方解石表面的吸附提供了活性位点。
  • Research Article

    Effect of dissolved components of malachite and calcite on surface properties and flotation behavior

    + Author Affiliations
    • In general, malachite is recovered via sulfidization–xanthate flotation, although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite. This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals. In this study, the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated. Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced, while the presence of the malachite supernatant increased the recovery of calcite. Dissolution and adsorption tests, along with zeta potential measurements, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry, and time-of-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface, which hindered the interaction of Na2S with malachite, thereby resulting in the insufficient adsorption of sodium isoamyl xanthate (NaIX) on the surface of malachite. By contrast, the Cu species in the malachite supernatant were adsorbed on the calcite surface, and they provided active sites for the subsequent adsorption of Na2S and NaIX.
    • loading
    • Supplementary Information-s12613-023-2606-9.docx
    • [1]
      H. Wang, S. Wen, G. Han, and Q. Feng, Adsorption characteristics of Pb(II) species on the sulfidized malachite surface and its response to flotation, Sep. Purif. Technol., 264(2021), art. No. 118440. doi: 10.1016/j.seppur.2021.118440
      [2]
      H. Wang, S. Wen, G. Han, and Q. Feng, Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation, Appl. Surf. Sci., 550(2021), art. No. 149350. doi: 10.1016/j.apsusc.2021.149350
      [3]
      X. Wang, W. Liu, F. Jiao, W. Qin, and C. Yang, New insights into the mechanism of selective flotation of copper and copper-tin alloy, Sep. Purif. Technol., 253(2020), art. No. 117497. doi: 10.1016/j.seppur.2020.117497
      [4]
      Z. Yin, W. Sun, Y. Hu, C. Zhang, Q. Guan, and K. Wu, Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests, J. Clean. Prod., 171(2018), p. 1039. doi: 10.1016/j.jclepro.2017.10.020
      [5]
      J. Li, H. Lu, S. Liu, and Z. Xu, Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field, J. Hazard. Mater., 153(2008), No. 1-2, p. 269. doi: 10.1016/j.jhazmat.2007.08.047
      [6]
      W.Z. Yin, Q.Y. Sun, D. Li, Y. Tang, Y.F. Fu, and J. Yao, Mechanism and application on sulphidizing flotation of copper oxide with combined collectors, Trans. Nonferrous Met. Soc. China, 29(2019), No. 1, p. 178. doi: 10.1016/S1003-6326(18)64926-X
      [7]
      X. Chen, Y. Peng, and D. Bradshaw, The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding, Miner. Eng., 58(2014), p. 64. doi: 10.1016/j.mineng.2014.01.010
      [8]
      F. Li, X. Zhou, G. Zhao, and R. Lin, A novel decyl-salicyl hydroxamic acid flotation collector: Its synthesis and flotation separation of malachite against quartz, Powder Technol., 374(2020), p. 522. doi: 10.1016/j.powtec.2020.07.068
      [9]
      Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
      [10]
      G. Han, S. Wen, H. Wang, and Q. Feng, Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance, Miner. Eng., 169(2021), art. No. 106982. doi: 10.1016/j.mineng.2021.106982
      [11]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3564. doi: 10.1016/S1003-6326(21)65748-5
      [12]
      N.O. Lotter, D.J. Bradshaw, and A.R. Barnes, Classification of the Major Copper Sulphides into semiconductor types, and associated flotation characteristics, Miner. Eng., 96-97(2016), p. 177. doi: 10.1016/j.mineng.2016.05.016
      [13]
      H. Wang, S. Wen, G. Han, Y. He, and Q. Feng, Adsorption behavior and mechanism of copper ions in the sulfidization flotation of malachite, Int. J. Min. Sci. Technol., 32(2022), No. 4, p. 897. doi: 10.1016/j.ijmst.2022.06.006
      [14]
      G. Han, S. Wen, H. Wang, and Q. Feng, Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1117. doi: 10.1016/j.ijmst.2021.11.001
      [15]
      G. Han, S. Wen, H. Wang, and Q. Feng, Identification of copper-sulfide species on the cuprite surface and its role in sulfidization flotation, Colloid Surf. A., 624(2021), art. No. 126854. doi: 10.1016/j.colsurfa.2021.126854
      [16]
      Q.C. Feng, W.H. Yang, S.M. Wen, H. Wang, W.J. Zhao, and G. Han, Flotation of copper oxide minerals: A review, Int. J. Min. Sci. Technol., 32(2022), No. 6, p. 1351. doi: 10.1016/j.ijmst.2022.09.011
      [17]
      C. Liu, G.L. Zhu, S.X. Song, and H.Q. Li, Interaction of gangue minerals with malachite and implications for the sulfidization flotation of malachite, Colloids Surf. A, 555(2018), p. 679. doi: 10.1016/j.colsurfa.2018.07.045
      [18]
      Y.F. Fu, Y. Hou, R. Wang, et al., Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate, Miner. Eng., 173(2021), art. No. 107191. doi: 10.1016/j.mineng.2021.107191
      [19]
      X.R. Zhang, L. Liang, Y.H. Li, Y.G. Zhu, L. Han, and C.B. Li, Flotation separation performance of malachite from calcite with new chelating collector and its adsorption mechanism, Sep. Purif. Technol., 255(2021), art. No. 117732. doi: 10.1016/j.seppur.2020.117732
      [20]
      R. Liu, D. Liu, J. Li, et al., Sulfidization mechanism in malachite flotation: A heterogeneous solid–liquid reaction that yields CuxSy phases grown on malachite, Miner. Eng., 154(2020), art. No. 106420. doi: 10.1016/j.mineng.2020.106420
      [21]
      Z.L. Li, F. Rao, B. Guo, W.R. Zuo, S.X. Song, and A. López-Valdivieso, Effects of calcium ions on malachite flotation with octyl hydroxamate, Miner. Eng., 141(2019), art. No. 105854. doi: 10.1016/j.mineng.2019.105854
      [22]
      K.P. Ananthapadmanabhan and P. Somasundaran, Surface precipitation of inorganics and surfactants and its role in adsorption and flotation, Colloids Surf., 13(1985), p. 151. doi: 10.1016/0166-6622(85)80014-7
      [23]
      A.S. Freitas, E. Matiolo, and R.T. Rodrigues, Flotation of calcite from apatite of a uranium-carbonate phosphate ore using carbon dioxide, Miner. Eng., 173(2021), art. No. 107240. doi: 10.1016/j.mineng.2021.107240
      [24]
      J. Liu, D.C. Kong, R.Q. Xie, Y.J. Li, Y.M. Zhu, and C. Liu, Flotation behavior and mechanism of hydroxycitric acid as a depressant on the flotation separation of cassiterite from calcite, Miner. Eng., 170(2021), art. No. 107046. doi: 10.1016/j.mineng.2021.107046
      [25]
      J. Ralston, D. Fornasiero, and S. Grano, Pulp and solution chemistry, [in] Froth Flotation: A Century of Innovation, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, 2007, p. 227.
      [26]
      X. Wang, W.H. Jia, C.R. Yang, et al., Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite, Miner. Eng., 170(2021), art. No. 106981. doi: 10.1016/j.mineng.2021.106981
      [27]
      C. Liu, S. Song, H. Li, and G. Ai, Sulfidization flotation performance of malachite in the presence of calcite, Miner. Eng., 132(2019), p. 293. doi: 10.1016/j.mineng.2018.11.051
      [28]
      Q. Zhang, Y.J. Wang, Q.C. Feng, et al., Identification of sulfidization products formed on azurite surfaces and its correlations with xanthate adsorption and flotation, Appl. Surf. Sci., 511(2020), art. No. 145594. doi: 10.1016/j.apsusc.2020.145594
      [29]
      Y.F. Fu, W.Z. Yin, X.S. Dong, et al., New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
      [30]
      Q. Zhang, S. Wen, W. Nie, and Q. Feng, Effect of dissolved species of cerussite on quartz flotation in sulfidization xanthate system, J. Mol. Liq., 356(2022), art. No. 119055. doi: 10.1016/j.molliq.2022.119055
      [31]
      Q. Zhang, S. Wen, S. Zhang, and Q. Feng, Surface chemistry of dissolved species of cerussite and calcite and its effect on flotation performance, Colloids Surf. A, 646(2022), art. No. 128945. doi: 10.1016/j.colsurfa.2022.128945
      [32]
      B. Yang, Y.F. Fu, W.Z. Yin, Q.Y. Sheng, Z.L. Zhu, and X.M. Yin, Selective collection performance of an efficient quartz collector and its response to flotation separation of malachite from quartz, Miner. Eng., 172(2021), art. No. 107174. doi: 10.1016/j.mineng.2021.107174
      [33]
      F.X. Li, H. Zhong, H.F. Xu, H. Jia, and G.Y. Liu, Flotation behavior and adsorption mechanism of α-hydroxyoctyl phosphinic acid to malachite, Miner. Eng., 71(2015), p. 188. doi: 10.1016/j.mineng.2014.11.013
      [34]
      Y.G. Chen, B. Feng, H.S. Yan, et al., Adsorption and depression mechanism of an eco-friendly depressant dextrin onto fluorite and calcite for the efficiency flotation separation, Colloids Surf. A, 635(2022), art. No. 127987. doi: 10.1016/j.colsurfa.2021.127987
      [35]
      H. Sun, F. Nie, and J. Zhang, Investigation on the flotation separation of smithsonite from calcite using calcium lignosulphonate as depressant, Colloids Surf. A, 630(2021), art. No. 127571. doi: 10.1016/j.colsurfa.2021.127571
      [36]
      L. Wang, W. Liu, F. Liu, J. Liu, and H. Zhang, Discrepant adsorption behavior of sodium alginate onto apatite and calcite surfaces: Implications for their selective flotation separation, Miner. Eng., 181(2022), art. No. 107553. doi: 10.1016/j.mineng.2022.107553
      [37]
      R.P. Liao, S.M. Wen, Q.C. Feng, J.S. Deng, and H. Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 271. doi: 10.1007/s12613-022-2505-5
      [38]
      G. Liu, Y. Huang, X. Qu, J. Xiao, X. Yang, and Z. Xu, Understanding the hydrophobic mechanism of 3-hexyl-4-amino-1,2,4-triazole-5-thione to malachite by ToF-SIMS, XPS, FTIR, contact angle, zeta potential and micro-flotation, Colloids Surf. A, 503(2016), p. 34. doi: 10.1016/j.colsurfa.2016.05.028
      [39]
      R. Liao, S. Wen, J. Liu, and Q. Feng, Flotation separation of fine smithsonite from calcite using sodium hexametaphosphate as the depressant in the Na2S–Pb(II)-KIAX system, Sep. Purif. Technol., 295(2022), art. No. 121245. doi: 10.1016/j.seppur.2022.121245
      [40]
      Q. Feng, M. Wang, G. Zhang, W. Zhao, and G. Han, Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification, Sep. Purif. Technol., 307(2023), art. No. 122772. doi: 10.1016/j.seppur.2022.122772
      [41]
      B. Yang, W. Yin, J. Yao, Q. Sheng, and Z. Zhu, Role of decaethoxylated stearylamine in the selective flotation of hornblende and siderite: An experimental and molecular dynamics simulation study, Appl. Surf. Sci., 571(2022), art. No. 151177. doi: 10.1016/j.apsusc.2021.151177
      [42]
      W. Zhao, M. Wang, B. Yang, Q. Feng, and D.W. Liu, Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper-ammonium species, Miner. Eng., 187(2022), art. No. 107796. doi: 10.1016/j.mineng.2022.107796
      [43]
      Y.L. Wang, G.C. He, D. Abudukade, et al., Selective inhibition of sodium tripolyphosphate on calcite in the process of magnesite flotation, J. Mol. Liq., 345(2022), art. No. 117412. doi: 10.1016/j.molliq.2021.117412

    Catalog


    • /

      返回文章
      返回