留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 8
Aug.  2023

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  484
  • HTML全文浏览量:  164
  • PDF下载量:  49
  • 被引次数: 0
Zhenlin Xue, Haikuan Sun, Deqing Gan, Zepeng Yan, and Zhiyi Liu, Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1515-1523. https://doi.org/10.1007/s12613-023-2610-0
Cite this article as:
Zhenlin Xue, Haikuan Sun, Deqing Gan, Zepeng Yan, and Zhiyi Liu, Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1515-1523. https://doi.org/10.1007/s12613-023-2610-0
引用本文 PDF XML SpringerLink
研究论文

基于非接触式实验探测的胶结膏体料浆在管道中的壁滑移行为


  • 通讯作者:

    孙海宽    E-mail: Sun159060@163.com

文章亮点

  • (1) 自主搭建了用于探究膏体料浆壁面滑移行为的小型环管实验系统。
  • (2) 分析了固相浓度、输送流量、管径及料浆温度对膏体滑移速度的影响特征。
  • (3) 基于粒子图像测速技术阐述了膏体料浆的壁面滑移机制。
  • 壁面滑移是胶结膏体充填料浆在管壁附近的微观现象,它对管壁处的料浆流动形态和速度分布有重要影响。用常规的实验方法直接探测壁面滑移特性是较为困难的。因此,本文基于粒子图像测速技术,建立了料浆管道输送微观滑移层独立监测的非接触式实验平台,分析了料浆温度、管径、固相浓度、料浆流量等因素对料浆壁滑移速度的影响,完善了壁滑移特性对管道输送影响的理论体系。结果表明:料浆在管壁处存在广泛的滑移层,且壁面滑移现象显著;料浆温度的提升增大了颗粒间的布朗运动程度,增强了壁面滑移效应。增大管径不利于料浆滑移层的形成,导致料浆流动模式发生转变。固相浓度的增加提高了料浆流动的层间剪切效应和滑移速度。固相含量从55wt%增加到65wt%时,滑移速度值从0.025增加到0.056 m·s−1。流量增大后,料浆的絮凝结构发生变化,从而对滑移速度产生影响;当输送流量为1.01 m3·h−1时,滑移层减阻效果最佳。研究结果对提高膏体充填料浆在管道中的稳定性和经济性具有重要的理论意义。
  • Research Article

    Wall slip behavior of cemented paste backfill slurry during pipeline based on noncontact experimental detection

    + Author Affiliations
    • Wall slip is a microscopic phenomenon of cemented paste backfill (CPB) slurry near the pipe wall, which has an important influence on the form of slurry pipe transport flow and velocity distribution. Directly probing the wall slip characteristics using conventional experimental methods is difficult. Therefore, this paper established a noncontact experimental platform for monitoring the microscopic slip layer of CPB pipeline transport independently based on particle image velocimetry (PIV) and analyzed the effects of slurry temperature, pipe diameter, solid concentration, and slurry flow on the wall slip velocity of the CPB slurry, which refined the theory of the effect of wall slip characteristics on pipeline transport. The results showed that the CPB slurry had an extensive slip layer at the pipe wall with significant wall slip. High slurry temperature improved the degree of particle Brownian motion within the slurry and enhanced the wall slip effect. Increasing the pipe diameter was not conducive to the formation of the slurry slip layer and led to a transition in the CPB slurry flow pattern. The increase in the solid concentration raised the interlayer shear effect of CPB slurry flow and the slip velocity. The slip velocity value increased from 0.025 to 0.056 m·s−1 when the solid content improved from 55wt% to 65wt%. When slurry flow increased, the CPB slurry flocculation structure changed, which affected the slip velocity, and the best effect of slip layer resistance reduction was achieved when the transported flow rate was 1.01 m3·h−1. The results had important theoretical significance for improving the stability and economy of the CPB slurry in the pipeline.
    • loading
    • [1]
      A.X. Wu, Z.E. Ruan, and J.D. Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 717. doi: 10.1007/s12613-022-2423-6
      [2]
      T. Kasap, E. Yilmaz, and M. Sari, Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings, J. Environ. Manage., 314(2022), art. No. 115034. doi: 10.1016/j.jenvman.2022.115034
      [3]
      T. Chen, K. Zhao, Y.J. Yan, Y. Zhou, Z.W. He, and L.J. Guo, Mechanical properties and acoustic emission response of cemented tailings backfill under variable angle shear, Constr. Build. Mater., 343(2022), art. No. 128114. doi: 10.1016/j.conbuildmat.2022.128114
      [4]
      A. Roshani and M. Fall, Rheological properties of cemented paste backfill with nano-silica: Link to curing temperature, Cem. Concr. Compos., 114(2020), art. No. 103785. doi: 10.1016/j.cemconcomp.2020.103785
      [5]
      S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
      [6]
      E.A. Ermolovich, A.L. Ivannikov, M.M. Khayrutdinov, C.B. Kongar-Syuryun, and Y.S. Tyulyaeva, Creation of a nanomodified backfill based on the waste from enrichment of water-soluble ores, Materials (Basel), 15(2022), No. 10, art. No. 3689.
      [7]
      K. El Mahboub, M. Mbonimpa, T. Belem, and A. Maqsoud, Rheological characterization of cemented paste backfills containing superabsorbent polymers (SAPs), Constr. Build. Mater., 317(2022), art. No. 125863. doi: 10.1016/j.conbuildmat.2021.125863
      [8]
      Z. Yan, S. Yin, X. Chen, and L. Wang, Rheological properties and wall-slip behavior of cemented tailing–waste rock backfill (CTWB) paste, Constr. Build. Mater., 324(2022), art. No. 126723. doi: 10.1016/j.conbuildmat.2022.126723
      [9]
      S.H. Yin, Y. Zhou, X. Chen, and G.C. Li, A new acoustic emission characteristic parameter can be utilized to evaluate the failure of cemented paste backfill and rock combination, Constr. Build. Mater., 392(2023), art. No. 132017. doi: 10.1016/j.conbuildmat.2023.132017
      [10]
      J. Ribeiro, D. Flores, C.R. Ward, and L.F.O. Silva, Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal, Sci. Total Environ., 408(2010), No. 23, p. 6032. doi: 10.1016/j.scitotenv.2010.08.046
      [11]
      J. Wang, J. Ma, K. Yang, S. Yao, and X. Shi, Effects and laws analysis for the mining technique of grouting into the overburden bedding separation, J. Cleaner Prod., 288(2021), art. No. 125121. doi: 10.1016/j.jclepro.2020.125121
      [12]
      M. Housseinpour, M. Osanloo, and Y. Azimi, Evaluation of positive and negative impacts of mining on sustainable development by a semi-quantitative method, J. Cleaner Prod., 366(2022), art. No. 132955. doi: 10.1016/j.jclepro.2022.132955
      [13]
      S.L. Sinha, S.K. Dewangan, and A. Sharma, A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry, Part. Sci. Technol., 35(2017), No. 1, p. 103. doi: 10.1080/02726351.2015.1131792
      [14]
      Q.L. Zhang, Q. Liu, J.W. Zhao, and J.G. Liu, Pipeline transportation characteristics of filling paste-like slurry pipeline in deep mine, Chin. J. Nonferrous Met., 25(2015), No. 11, p. 3190.
      [15]
      C. Qi, Q. Chen, A. Fourie, J. Zhao, and Q. Zhang, Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study, Powder Technol., 333(2018), p. 9. doi: 10.1016/j.powtec.2018.03.070
      [16]
      C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [17]
      L. Liu, Z. Fang, C. Qi, B. Zhang, L. Guo, and K.I. Song, Numerical study on the pipe flow characteristics of the cemented paste backfill slurry considering hydration effects, Powder Technol., 343(2019), p. 454. doi: 10.1016/j.powtec.2018.11.070
      [18]
      D. Wu, B. Yang, and Y. Liu, Transportability and pressure drop of fresh cemented coal gangue–fly ash backfill (CGFB) slurry in pipe loop, Powder Technol., 284(2015), p. 218. doi: 10.1016/j.powtec.2015.06.072
      [19]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B. Zhou, and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [20]
      L. Liu, J. Xin, C. Huan, et al., Effect of curing time on the mesoscopic parameters of cemented paste backfill simulated using the particle flow code technique, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 590. doi: 10.1007/s12613-020-2007-2
      [21]
      H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
      [22]
      N. Zhou, C.W. Dong, J.X. Zhang, G.H. Meng, and Q.Q. Cheng, Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill, Constr. Build. Mater., 313(2021), art. No. 125492. doi: 10.1016/j.conbuildmat.2021.125492
      [23]
      T. Asim and R. Mishra, Computational fluid dynamics based optimal design of hydraulic capsule pipelines transporting cylindrical capsules, Powder Technol., 295(2016), p. 180. doi: 10.1016/j.powtec.2016.03.013
      [24]
      H.K. Sun, D.Q. Gan, Z.L. Xue, and Y.J. Zhang, Categorization of factors affecting the resistance and parameters optimization of ultra-fine cemented paste backfill pipeline transport, Buildings, 12(2022), No. 10, art. No. 1697. doi: 10.3390/buildings12101697
      [25]
      D.R. Kaushal, T. Thinglas, Y. Tomita, S. Kuchii, and H. Tsukamoto, CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiphase Flow, 43(2012), p. 85. doi: 10.1016/j.ijmultiphaseflow.2012.03.005
      [26]
      M. Liu, L.Y. Chen, and Y.F. Duan, Local resistance characteristics of highly concentrated coal-water slurry flow through fittings, Korean J. Chem. Eng., 26(2009), No. 2, p. 569. doi: 10.1007/s11814-009-0097-7
      [27]
      N. Gharib, B. Bharathan, L. Amiri, M. McGuinness, F.P. Hassani, and A.P. Sasmito, Flow characteristics and wear prediction of Herschel–Bulkley non-Newtonian paste backfill in pipe elbows, Can. J. Chem. Eng., 95(2017), No. 6, p. 1181. doi: 10.1002/cjce.22749
      [28]
      J. Chang, T. Jung, H. Choi, and J. Kim, Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow, J. Fluid Mech., 874(2019), p. 797. doi: 10.1017/jfm.2019.468
      [29]
      F. Hadri, A. Besq, S. Guillou, and R. Makhloufi, Drag reduction with an aqueous solution of CTAC-NaSal: Study of the wall slip with a Couette geometry, C.R. Mec., 338(2010), No. 3, p. 152. doi: 10.1016/j.crme.2010.03.002
      [30]
      Y.C. Lam, Z.Y. Wang, X. Chen, and S.C. Joshi, Wall slip of concentrated suspension melts in capillary flows, Powder Technol., 177(2007), No. 3, p. 162. doi: 10.1016/j.powtec.2007.03.044
      [31]
      M. Malik, D.M. Kalyon, and J.C. Golba Jr, Simulation of Co-rotating twin screw extrusion process subject to pressure-dependent wall slip at barrel and screw surfaces: 3D FEM analysis for combinations of forward- and reverse-conveying screw elements, Int. Polym. Process., 29(2014), No. 1, p. 51. doi: 10.3139/217.2802
      [32]
      S.A. Gulmus and U. Yilmazer, Effect of volume fraction and particle size on wall slip in flow of polymeric suspensions, J. Appl. Polym. Sci., 98(2005), No. 1, p. 439. doi: 10.1002/app.21928
      [33]
      L. Fusi, A. Farina, G. Saccomandi, and K.R. Rajagopal, Lubrication approximation of flows of a special class of non-Newtonian fluids defined by rate type constitutive equations, Appl. Math. Model., 60(2018), p. 508. doi: 10.1016/j.apm.2018.03.038
      [34]
      H. Mirzaeifar, K. Hatami, and M.R. Abdi, Pullout testing and Particle Image Velocimetry (PIV) analysis of geogrid reinforcement embedded in granular drainage layers, Geotext. Geomembr., 50(2022), No. 6, p. 1083. doi: 10.1016/j.geotexmem.2022.06.008
      [35]
      S. Hochstein, A. Jakupov, J.U. Schmollack, D. Sporer, V. Wank, and R. Blickhan, An alternative illumination source based on LEDs for PIV measurements on human swimmers—A feasibility study, Flow Meas. Instrum., 88(2022), art. No. 102251. doi: 10.1016/j.flowmeasinst.2022.102251
      [36]
      T. Hori and J. Sakakibara, High-speed scanning stereoscopic PIV for 3D vorticity measurement in liquids, Meas. Sci. Technol., 15(2004), No. 6, p. 1067. doi: 10.1088/0957-0233/15/6/005
      [37]
      A. Sciacchitano, B. Wieneke, and F. Scarano, PIV uncertainty quantification by image matching, Meas. Sci. Technol., 24(2013), No. 4, art. No. 045302. doi: 10.1088/0957-0233/24/4/045302
      [38]
      X. Zhang and X. Wang, Novel survey on the color-image graying algorithm, [in] 2016 IEEE International Conference on Computer and Information Technology (CIT), Nadi, 2016, p. 750.
      [39]
      S. Ghosh, D. van den Ende, F. Mugele, and M.H.G. Duits, Apparent wall-slip of colloidal hard-sphere suspensions in microchannel flow, Colloids Surf. A: Physicochem. Eng. Aspects, 491(2016), p. 50. doi: 10.1016/j.colsurfa.2015.11.066
      [40]
      B.J. Medhi, A. Ashok Kumar, and A. Singh, Apparent wall slip velocity measurements in free surface flow of concentrated suspensions, Int. J. Multiphase Flow, 37(2011), No. 6, p. 609. doi: 10.1016/j.ijmultiphaseflow.2011.03.006
      [41]
      J. He, S.S. Lee, and D.M. Kalyon, Shear viscosity and wall slip behavior of dense suspensions of polydisperse particles, J. Rheol., 63(2019), No. 1, p. 19. doi: 10.1122/1.5053702
      [42]
      M. Karzar-Jeddi, H.X. Luo, and P.T. Cummings, Mobilities of polydisperse hard spheres near a no-slip wall, Comput. Fluids, 176(2018), p. 40. doi: 10.1016/j.compfluid.2018.09.003
      [43]
      X. Ma, Y. Duan, and H. Li, Wall slip and rheological behavior of petroleum-coke sludge slurries flowing in pipelines, Powder Technol., 230(2012), p. 127. doi: 10.1016/j.powtec.2012.07.019
      [44]
      L.Y. Chen, Y.F. Duan, C.S. Zhao, and L.G. Yang, Rheological behavior and wall slip of concentrated coal water slurry in pipe flows, Chem. Eng. Process. Process. Intensif., 48(2009), No. 7, p. 1241. doi: 10.1016/j.cep.2009.05.002
      [45]
      A.X. Wu, X.H. Liu, H.J. Wang, Y.M. Wang, H.Z. Jiao, and S.Z. Liu, Resistance characteristics of structure fluid backfilling slurry in pipeline transport, J. Cent. South Univ. Sci. Technol., 45(2014), No. 12, p. 4325.
      [46]
      F. Soltani and Ü. Yilmazer, Slip velocity and slip layer thickness in flow of concentrated suspensions, J. Appl. Polym. Sci., 70(1998), No. 3, p. 515. doi: 10.1002/(SICI)1097-4628(19981017)70:3<515::AID-APP13>3.0.CO;2-#

    Catalog


    • /

      返回文章
      返回