留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2606
  • HTML全文浏览量:  207
  • PDF下载量:  125
  • 被引次数: 0
Peng Sun, Sumei Han, Jinhua Liu, Jingjing Zhang, Shuo Yang, Faguo Wang, Wenxiu Liu, Shu Yin, Zhanwu Ning, and Wenbin Cao, Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2025-2035. https://doi.org/10.1007/s12613-023-2611-z
Cite this article as:
Peng Sun, Sumei Han, Jinhua Liu, Jingjing Zhang, Shuo Yang, Faguo Wang, Wenxiu Liu, Shu Yin, Zhanwu Ning, and Wenbin Cao, Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2025-2035. https://doi.org/10.1007/s12613-023-2611-z
引用本文 PDF XML SpringerLink
研究论文

铁掺杂二氧化钛中的氧空位诱导生成机制及其光催化性能研究



  • 通讯作者:

    Shu Yin    E-mail: yin.shu.b5@tohoku.ac.jp

    宁占武    E-mail: nzwu@163.com

    曹文斌    E-mail: wbcao@ustb.edu.cn

文章亮点

  • (1) Fe3+掺杂可以降低TiO2晶格中OVs的形成能。
  • (2) 通过DFT计算研究了Fe–TiO2的电子结构。
  • (3) 通过载流子寿命和有效质量研究了Fe3+和OVs对载流子分离效率的影响。
  • 氧空位(OVs)由于可有效提高二氧化钛(TiO2)光催化性能而成为近年研究热点。然而,氧空位修饰二氧化钛(OVs-TiO2)仍面临合成温度高、成本高等问题,温和条件下实现OVs-TiO2的合成仍是较大的挑战。本文通过掺杂三价铁离子(Fe3+)在水热条件下实现了TiO2晶格中OVs的诱导生成,并通过理论计算和实验方法研究了铁掺杂二氧化钛(Fe–TiO2)中OVs的形成机制以及其光催化机理。结果表明:Fe–TiO2中的OVs形成能(1.12 eV)仅为TiO2(4.74 eV)的23.6%,阐明了TiO2晶格中OVs的Fe3+掺杂诱导生成机制;Fe3+和OVs可在TiO2能带中引入杂质态,增强了TiO2的光吸收活性;1%Fe–TiO2、2%Fe–TiO2和3%Fe–TiO2的载流子寿命分别为4.00、4.10和3.34 ns,高于未掺杂TiO2中的载流子寿命(3.22 ns),表明Fe3+和OVs可以促进电荷载流子分离。因此,由于具有较强的光吸收活性和较高的载流子分离效率,Fe–TiO2具有比其他光催化剂更高的室内一氧化氮光催化去除性能。
  • Research Article

    Introducing oxygen vacancies in TiO2 lattice through trivalent iron to enhance the photocatalytic removal of indoor NO

    + Author Affiliations
    • The synthesis of oxygen vacancies (OVs)-modified TiO2 under mild conditions is attractive. In this work, OVs were easily introduced in TiO2 lattice during the hydrothermal doping process of trivalent iron ions. Theoretical calculations based on a novel charge-compensation structure model were employed with experimental methods to reveal the intrinsic photocatalytic mechanism of Fe-doped TiO2 (Fe–TiO2). The OVs formation energy in Fe–TiO2 (1.12 eV) was only 23.6% of that in TiO2 (4.74 eV), explaining why Fe3+ doping could introduce OVs in the TiO2 lattice. The calculation results also indicated that impurity states introduced by Fe3+ and OVs enhanced the light absorption activity of TiO2. Additionally, charge carrier transport was investigated through the carrier lifetime and relative mass. The carrier lifetime of Fe–TiO2 (4.00, 4.10, and 3.34 ns for 1at%, 2at%, and 3at% doping contents, respectively) was longer than that of undoped TiO2 (3.22 ns), indicating that Fe3+ and OVs could promote charge carrier separation, which can be attributed to the larger relative effective mass of electrons and holes. Herein, Fe–TiO2 has higher photocatalytic indoor NO removal activity compared with other photocatalysts because it has strong light absorption activity and high carrier separation efficiency.
    • loading
    • Supplementary Information-s12613-023-2611-z.docx
    • [1]
      R. Cassia, M. Nocioni, N. Correa-Aragunde, and L. Lamattina, Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress, Front. Plant Sci., 9(2018), art. No. 273. doi: 10.3389/fpls.2018.00273
      [2]
      F.L.M. Ricciardolo, P.J. Sterk, B. Gaston, and G. Folkerts, Nitric oxide in health and disease of the respiratory system, Physiol. Rev., 84(2004), No. 3, p. 731. doi: 10.1152/physrev.00034.2003
      [3]
      N. Carslaw and D. Shaw, Secondary product creation potential (SPCP): A metric for assessing the potential impact of indoor air pollution on human health, Environ. Sci. Process. Impacts, 21(2019), No. 8, p. 1313. doi: 10.1039/C9EM00140A
      [4]
      J.P. Liu, S. Li, J.F. Zeng, et al., Assessing indoor gas phase oxidation capacity through real-time measurements of HONO and NOx in Guangzhou, China, Environ. Sci. Process. Impacts, 21(2019), No. 8, p. 1393. doi: 10.1039/C9EM00194H
      [5]
      L.P. Han, S.X. Cai, M. Gao, et al., Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects, Chem. Rev., 119(2019), No. 19, p. 10916. doi: 10.1021/acs.chemrev.9b00202
      [6]
      N. Zhu, W.P. Shan, Z.H. Lian, Y. Zhang, K. Liu, and H. He, A superior Fe–V–Ti catalyst with high activity and SO2 resistance for the selective catalytic reduction of NOx with NH3, J. Hazard. Mater., 382(2020), art. No. 120970. doi: 10.1016/j.jhazmat.2019.120970
      [7]
      Z.F. Bai, B.B. Chen, Q. Zhao, C. Shi, and M. Crocker, Positive effects of K+ in hybrid CoMn–K and Pd/Ba/Al2O3 catalysts for NOx storage and reduction, Appl. Catal. B, 249(2019), p. 333. doi: 10.1016/j.apcatb.2019.01.095
      [8]
      X. Bi, G.H. Du, D.F. Sun, et al., Room-temperature synthesis of yellow TiO2 nanoparticles with enhanced photocatalytic properties, Appl. Surf. Sci., 511(2020), art. No. 145617. doi: 10.1016/j.apsusc.2020.145617
      [9]
      M.Z. Guo, J.S. Li, and C.S. Poon, Improved photocatalytic nitrogen oxides removal using recycled glass-nano-TiO2 composites with NaOH pre-treatment, J. Cleaner Prod., 209(2019), p. 1095. doi: 10.1016/j.jclepro.2018.10.303
      [10]
      P. Ribao, J. Corredor, M.J. Rivero, and I. Ortiz, Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts, J. Hazard. Mater., 372(2019), p. 45. doi: 10.1016/j.jhazmat.2018.05.026
      [11]
      S.H. Liu and W.X. Lin, A simple method to prepare g-C3N4–TiO2/waste zeolites as visible-light-responsive photocatalytic coatings for degradation of indoor formaldehyde, J. Hazard. Mater., 368(2019), p. 468. doi: 10.1016/j.jhazmat.2019.01.082
      [12]
      H. Chakhtouna, H. Benzeid, N. Zari, A.E.K. Qaiss, and R. Bouhfid, Recent progress on Ag/TiO2 photocatalysts: Photocatalytic and bactericidal behaviors, Environ. Sci. Pollut. Res. Int., 28(2021), No. 33, p. 44638. doi: 10.1007/s11356-021-14996-y
      [13]
      X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331(2011), No. 6018, p. 746. doi: 10.1126/science.1200448
      [14]
      G. Ou, Y.S. Xu, B. Wen, et al., Tuning defects in oxides at room temperature by lithium reduction, Nat. Commun., 9(2018), No. 1, art. No. 1302. doi: 10.1038/s41467-018-03765-0
      [15]
      Z. Hu, K.N. Li, X.F. Wu, et al., Dramatic promotion of visible-light photoreactivity of TiO2 hollow microspheres towards NO oxidation by introduction of oxygen vacancy, Appl. Catal. B, 256(2019), art. No. 117860. doi: 10.1016/j.apcatb.2019.117860
      [16]
      J.G. Speight, Lange’s Handbook of Chemistry, 16th ed., McGraw-Hill, New York, 2005.
      [17]
      C.Y. Yang, Z. Wang, T.Q. Lin, et al., Core–shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping, J. Am. Chem. Soc., 135(2013), No. 47, p. 17831. doi: 10.1021/ja4076748
      [18]
      C.Y. Mao, F. Zuo, Y. Hou, X.H. Bu, and P.Y. Feng, In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction, Angew. Chem. Int. Ed., 53(2014), No. 39, p. 10485. doi: 10.1002/anie.201406017
      [19]
      J.X. Qiu, S. Li, E. Gray, et al., Hydrogenation synthesis of blue TiO2 for high-performance lithium-ion batteries, J. Phys. Chem. C, 118(2014), No. 17, p. 8824. doi: 10.1021/jp501819p
      [20]
      Z. Zhao, H.Q. Tan, H.F. Zhao, et al., Reduced TiO2 rutile nanorods with well-defined facets and their visible-light photocatalytic activity, Chem. Commun., 50(2014), No. 21, p. 2755. doi: 10.1039/C3CC49182J
      [21]
      C.H. Fang, T. Bi, X.X. Xu, et al., Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction, Adv. Mater. Interfaces, 6(2019), No. 21, art. No. 1901034. doi: 10.1002/admi.201901034
      [22]
      Y.N. Wu, Y.Y. Fu, L. Zhang, et al., Study of oxygen vacancies on different facets of anatase TiO2, Chin. J. Chem., 37(2019), No. 9, p. 922. doi: 10.1002/cjoc.201900188
      [23]
      X. Zhang, L. Luo, R.P. Yun, M. Pu, B. Zhang, and X. Xiang, Increasing the activity and selectivity of TiO2-supported Au catalysts for renewable hydrogen generation from ethanol photoreforming by engineering Ti3+ defects, ACS Sustainable Chem. Eng., 7(2019), No. 16, p. 13856. doi: 10.1021/acssuschemeng.9b02008
      [24]
      B.Y. Tan, X.H. Zhang, Y.J. Li, et al., Anatase TiO2 mesocrystals: Green synthesis, in situ conversion to porous single crystals, and self-doping Ti3+ for enhanced visible light driven photocatalytic removal of NO, Chem. Eur. J., 23(2017), No. 23, p. 5478. doi: 10.1002/chem.201605294
      [25]
      F. Li, T.H. Han, H.G. Wang, X.M. Zheng, J.M. Wan, and B.K. Ni, Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals, J. Mater. Res., 32(2017), No. 8, p. 1563. doi: 10.1557/jmr.2017.49
      [26]
      R.L. Fomekong and B. Saruhan, Synthesis of Co3+ doped TiO2 by co-precipitation route and its gas sensing properties, Front. Mater., 6(2019), art. No. 252. doi: 10.3389/fmats.2019.00252
      [27]
      V.R. Akshay, B. Arun, G. Mandal, and M. Vasundhara, Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method, Phys. Chem. Chem. Phys., 21(2019), No. 24, p. 12991. doi: 10.1039/C9CP01351B
      [28]
      G. Cheng, X. Liu, X.J. Song, et al., Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies, Appl. Catal. B, 277(2020), art. No. 119196. doi: 10.1016/j.apcatb.2020.119196
      [29]
      K.R.V. Babu, C.G. Renuka, and H. Nagabhushana, Mixed fuel approach for the fabrication of TiO2:Ce3+ (1–9 mol%) nanophosphors: Applications towards wLED and latent finger print detection, Ceram. Int., 44(2018), No. 7, p. 7618. doi: 10.1016/j.ceramint.2018.01.184
      [30]
      A. Roldán, M. Boronat, A. Corma, and F. Illas, Theoretical confirmation of the enhanced facility to increase oxygen vacancy concentration in TiO2 by iron doping, J. Phys. Chem. C, 114(2010), No. 14, p. 6511. doi: 10.1021/jp911851h
      [31]
      X.H. Zheng, Y.L. Li, W.L. You, et al., Construction of Fe-doped TiO2−x ultrathin nanosheets with rich oxygen vacancies for highly efficient oxidation of H2S, Chem. Eng. J., 430(2022), art. No. 132917. doi: 10.1016/j.cej.2021.132917
      [32]
      T.T. Loan, V.H. Huong, N.T. Huyen, L.V. Quyet, N.A. Bang, and N.N. Long, Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content, Opt. Mater., 111(2021), art. No. 110651. doi: 10.1016/j.optmat.2020.110651
      [33]
      C.R. Shyniya, K.A. Bhabu, and T.R. Rajasekaran, Enhanced electrochemical behavior of novel acceptor doped titanium dioxide catalysts for photocatalytic applications, J. Mater. Sci., 28(2017), No. 9, p. 6959.
      [34]
      J.B. Shi, G.Q. Chen, G.M. Zeng, et al., Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance, Ceram. Int., 44(2018), No. 7, p. 7473. doi: 10.1016/j.ceramint.2018.01.124
      [35]
      X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
      [36]
      T. Ali, P. Tripathi, A. Azam, et al., Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation, Mater. Res. Express, 4(2017), No. 1, art. No. 015022. doi: 10.1088/2053-1591/aa576d
      [37]
      J.J. Zheng, Z.W. Wang, J.X. Ma, S.P. Xu, and Z.C. Wu, Development of an electrochemical ceramic membrane filtration system for efficient contaminant removal from waters, Environ. Sci. Technol., 52(2018), No. 7, p. 4117. doi: 10.1021/acs.est.7b06407
      [38]
      G. Rajender, J. Kumar, and P.K. Giri, Interfacial charge transfer in oxygen deficient TiO2–graphene quantum dot hybrid and its influence on the enhanced visible light photocatalysis, Appl. Catal. B, 224(2018), p. 960. doi: 10.1016/j.apcatb.2017.11.042
      [39]
      F. Xu, W.N. Cao, J.Z. Li, et al., TiO2@NH2-MIL-125(Ti) composite derived from a partial-etching strategy with enhanced carriers’ transfer for the rapid photocatalytic Cr(VI) reduction, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 630. doi: 10.1007/s12613-022-2559-4
      [40]
      X.J. Song, W.J. Jiang, Z.H. Cai, et al., Visible light-driven deep oxidation of NO and its durability over Fe doped BaSnO3: The NO+ intermediates mechanism and the storage capacity of Ba ions, Chem. Eng. J., 444(2022), art. No. 136709. doi: 10.1016/j.cej.2022.136709
      [41]
      M. Abdulla-Al-Mamun, Y. Kusumoto, and M.S. Islam, Enhanced photocatalytic cytotoxic activity of Ag@Fe-doped TiO2 nanocomposites against human epithelial carcinoma cells, J. Mater. Chem., 22(2012), No. 12, p. 5460. doi: 10.1039/c2jm15636a
      [42]
      H. Moradi, A. Eshaghi, S.R. Hosseini, and K. Ghani, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem., 32(2016), p. 314. doi: 10.1016/j.ultsonch.2016.03.025
      [43]
      A. Kundu and A. Mondal, Structural, optical, physio-chemical properties and photodegradation study of methylene blue using pure and iron-doped anatase titania nanoparticles under solar-light irradiation, J. Mater. Sci., 30(2019), No. 4, p. 3244.
      [44]
      H. Guo, C.G. Niu, C. Liang, et al., Highly crystalline porous carbon nitride with electron accumulation capacity: Promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation, Chem. Eng. J., 409(2021), art. No. 128030. doi: 10.1016/j.cej.2020.128030
      [45]
      Q. Su, J. Li, H.Y. Yuan, et al., Visible-light-driven photocatalytic degradation of ofloxacin by g-C3N4/NH2-MIL-88B(Fe) heterostructure: Mechanisms, DFT calculation, degradation pathway and toxicity evolution, Chem. Eng. J., 427(2022), art. No. 131594. doi: 10.1016/j.cej.2021.131594
      [46]
      H. Shang, M.Q. Li, H. Li, et al., Oxygen vacancies promoted the selective photocatalytic removal of NO with blue TiO2 via simultaneous molecular oxygen activation and photogenerated hole annihilation, Environ. Sci. Technol., 53(2019), No. 11, p. 6444. doi: 10.1021/acs.est.8b07322
      [47]
      J.X. Li, H. Yuan, W.J. Zhang, R.J. Zhu, and Z.B. Jiao, Construction of BiVO4/BiOCl@C Z-scheme heterojunction for enhanced photoelectrochemical performance, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1971. doi: 10.1007/s12613-022-2481-9
      [48]
      J.F. Zheng, X.S. Deng, X. Zhou, et al., Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods, J. Mater. Sci., 30(2019), p. 11043.
      [49]
      Z.Y. Gu, Z.T. Cui, Z.J. Wang, et al., Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism, Appl. Catal. B, 279(2020), art. No. 119376. doi: 10.1016/j.apcatb.2020.119376
      [50]
      M. Yadav, A. Yadav, R. Fernandes, et al., Tungsten-doped TiO2/reduced graphene oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination, J. Environ. Manage., 203(2017), p. 364. doi: 10.1016/j.jenvman.2017.08.010
      [51]
      J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–Shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
      [52]
      W.L. Yu, D.F. Xu, and T.Y. Peng, Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: A direct Z-scheme mechanism, J. Mater. Chem. A, 3(2015), No. 39, p. 19936. doi: 10.1039/C5TA05503B
      [53]
      X.J. Ye, Y.H. Chen, C.C. Ling, et al., Chalcogenide photocatalysts for selective oxidation of aromatic alcohols to aldehydes using O2 and visible light: A case study of CdIn2S4, CdS and In2S3, Chem. Eng. J., 348(2018), p. 966. doi: 10.1016/j.cej.2018.05.035
      [54]
      H.J. Zhang, L. Liu, and Z. Zhou, First-principles studies on facet-dependent photocatalytic properties of bismuth oxyhalides (BiOXs), RSC Adv., 2(2012), No. 24, p. 9224. doi: 10.1039/c2ra20881d
      [55]
      Z.Y. Gu, Z.T. Cui, Z.J. Wang, et al., Intrinsic carbon-doping induced synthesis of oxygen vacancies-mediated TiO2 nanocrystals: Enhanced photocatalytic NO removal performance and mechanism, J. Catal., 393(2021), p. 179. doi: 10.1016/j.jcat.2020.11.025
      [56]
      W.J. Wang, X. Wang, Y. Li, et al., Effects of transition metal doping on electronic structure of metastable β-Fe2O3 photocatalyst for solar-to-hydrogen conversion, Phys. Chem. Chem. Phys., 24(2022), No. 11, p. 6958. doi: 10.1039/D2CP00078D
      [57]
      B. Singha and K. Ray, Density functional theory insights on photocatalytic ability of CuO/TiO2 and CuO/ZnO, Mater. Today Proc., 72(2023), p. 451. doi: 10.1016/j.matpr.2022.08.313

    Catalog


    • /

      返回文章
      返回