留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 7
Jul.  2023

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1606
  • HTML全文浏览量:  413
  • PDF下载量:  110
  • 被引次数: 0
Xiaoxiao Pang, Tingting Wang, Bin Liu, Xiayue Fan, Xiaorui Liu, Jing Shen, Cheng Zhong, and Wenbin Hu, Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1407-1416. https://doi.org/10.1007/s12613-023-2614-9
Cite this article as:
Xiaoxiao Pang, Tingting Wang, Bin Liu, Xiayue Fan, Xiaorui Liu, Jing Shen, Cheng Zhong, and Wenbin Hu, Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method, Int. J. Miner. Metall. Mater., 30(2023), No. 7, pp. 1407-1416. https://doi.org/10.1007/s12613-023-2614-9
引用本文 PDF XML SpringerLink
研究论文

溶剂类型对一步水热法合成钛酸钡形貌和结构的影响

  • 通讯作者:

    钟澄    E-mail: cheng.zhong@tju.edu.cn

文章亮点

  • (1) 系统研究了溶剂种类对一步水热法合成钛酸钡的晶体结构、形貌、粒径分布的影响规律。
  • (2) 结合溶剂的物理化学特性分析了一步水热法过程中的溶剂效应。
  • (3) 总结并提出了合成四方性高、形貌良好、粒径小的四方相钛酸钡纳米颗粒的最佳溶剂条件。
  • 钛酸钡因其优异的介电、铁电、压电和热释电性能,在介电陶瓷工业,尤其是多层陶瓷电容器(MLCCs)中具有广阔的应用前景。近年来,随着电子器件向小型化和多功能化发展,对具有薄介电层和超高容量的MLCCs的需求显著增加,进而对钛酸钡粉体的晶体特性和粒径提出了更高的要求。本文通过简单的一步水热法合成了高四方性、形貌良好、粒径小的四方相钛酸钡,系统探究了溶剂种类对钛酸钡粉体的晶体结构、形貌特征、粒径分布等特性的影响规律。结果表明,在纯水、甲醇/水混合溶剂、乙醇/水混合溶剂、异丙醇/水混合溶剂条件下均能合成形貌良好的高纯度四方相钛酸钡粉体。四方性随内孔孔径的增大而减小,可以说明内孔缺陷的存在在一定程度上抑制了钛酸钡的四方性。在纯水中合成的钛酸钡颗粒尺寸最大,向反应介质中加入一元醇(甲醇、乙醇、异丙醇)后,粒径分布范围变窄,平均粒径均有所减小,并且按照异丙醇、乙醇和甲醇的顺序减小。最后,结合钛酸钡粉体的晶体特性和粒径形貌特性,确定了乙醇/水混合溶剂为一步水热法合成四方相钛酸钡的最佳溶剂条件,在此条件下合成的四方相钛酸钡具有1.0088的高四方性、良好的球形形貌、82 nm的小平均粒径,在多层陶瓷电容器中具有很大的实际应用前景。
  • Research Article

    Effect of solvents on the morphology and structure of barium titanate synthesized by a one-step hydrothermal method

    + Author Affiliations
    • Tetragonal barium titanate was synthesized from barium hydroxide octahydrate and titanium tetrachloride through a simple one-step hydrothermal method. The effect of different solvents on the crystal structure and morphology of barium titanate nanoparticles during the hydrothermal process was investigated. Except for ethylene glycol/water solvent, impurity-free barium titanate was synthesized in pure water, methanol/water, ethanol/water, and isopropyl alcohol/water mixed solvents. Compared with other alcohols, ethanol promotes the formation of a tetragonal structure. In addition, characterization studies confirm that particles synthesized in methanol/water, ethanol/water, and isopropyl alcohol/water mixed solvents are smaller in size than those synthesized in pure water. In the case of alcohol-containing solvents, the particle size decreases in the order of isopropanol, ethanol, and methanol. Among all the media used in this study, ethanol/water is considered the optimum reaction media for barium titanate with high tetragonality (defined as the ratio of two lattice parameters c and a, c/a = 1.0088) and small average particle size (82 nm), which indicates its great application potential in multilayer ceramic capacitors.
    • loading
    • [1]
      I. Pasuk, F. Neațu, Ș. Neațu, et al., Structural details of BaTiO3 nano-powders deduced from the anisotropic XRD peak broadening, Nanomaterials, 11(2021), No. 5, art. No. 1121. doi: 10.3390/nano11051121
      [2]
      D. Mao, Z. Zhang, M. Yang, Z.M. Wang, R.B. Yu, and D. Wang, Constructing BaTiO3/TiO2@polypyrrole composites with hollow multishelled structure for enhanced electromagnetic wave absorbing properties, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 581. doi: 10.1007/s12613-022-2556-7
      [3]
      L. Wang, J.Q. Lv, F. Shi, K.X. Song, W. Lei, H.F. Zhou, Z.M. Qi, and J. Wang, Intrinsic dielectric properties and lattice vibrational characteristics of single phase BaTiO3 ceramic, J. Mater. Sci.: Mater. Electron., 32(2021), No. 19, p. 24041. doi: 10.1007/s10854-021-06866-7
      [4]
      Y. Liu, S.F. Wang, Z.J. Chen, and L.X. Xiao, Applications of ferroelectrics in photovoltaic devices, Sci. China Mater., 59(2016), No. 10, p. 851. doi: 10.1007/s40843-016-5102-0
      [5]
      G. Bolla, H.L. Dong, Y.G. Zhen, Z.H. Wang, and W.P. Hu, Organic cocrystals: The development of ferroelectric properties, Sci. China Mater., 59(2016), No. 7, p. 523. doi: 10.1007/s40843-016-5049-y
      [6]
      L. Lv, Y. Wang, L. Gan, Q. Liu, and J.P. Zhou, Sintering process effect on the BaTiO3 ceramic properties with the hydrothermally prepared powders, J. Mater. Sci.: Mater. Electron., 29(2018), No. 17, p. 14883. doi: 10.1007/s10854-018-9626-7
      [7]
      E. Song, D.H. Kim, E.J. Jeong, et al., Effects of particle size and polymorph type of TiO2 on the properties of BaTiO3 nanopowder prepared by solid-state reaction, Environ. Res., 202(2021), art. No. 111668. doi: 10.1016/j.envres.2021.111668
      [8]
      K. Suzuki and K. Kijima, Phase transformation of BaTiO3 nanoparticles synthesized by RF-plasma CVD, J. Alloys Compd., 419(2006), No. 1-2, p. 234. doi: 10.1016/j.jallcom.2005.08.075
      [9]
      R.J. Li, W.X. Wei, J.L. Hai, L.X. Gao, Z.W. Gao, and Y.Y. Fan, Preparation and electric-field response of novel tetragonal barium titanate, J. Alloys Compd., 574(2013), p. 212. doi: 10.1016/j.jallcom.2013.04.203
      [10]
      O. Kucuk, S. Teber, I.C. Kaya, H. Akyildiz, and V. Kalem, Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers, J. Alloys Compd., 765(2018), p. 82. doi: 10.1016/j.jallcom.2018.06.165
      [11]
      J.M. Han, M.R. Joung, J.S. Kim, et al., Hydrothermal synthesis of BaTiO3 nanopowders using TiO2 nanoparticles, J. Am. Ceram. Soc., 97(2014), No. 2, p. 346. doi: 10.1111/jace.12755
      [12]
      Y. Shi, Y.P. Pu, Y.F. Cui, and Y.J. Luo, Enhanced grain size effect on electrical characteristics of fine-grained BaTiO3 ceramics, J. Mater. Sci.: Mater. Electron., 28(2017), No. 17, p. 13229. doi: 10.1007/s10854-017-7158-1
      [13]
      T.T. Lee, C.Y. Huang, C.Y. Chang, et al., Phase evolution of solid-state BaTiO3 powder prepared with the ultrafine BaCO3 and TiO2, J. Mater. Res., 27(2012), No. 19, p. 2495. doi: 10.1557/jmr.2012.255
      [14]
      J.L. Clabel H, I.T. Awan, A.H. Pinto, et al., Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent, Ceram. Int., 46(2020), No. 3, p. 2987. doi: 10.1016/j.ceramint.2019.09.296
      [15]
      A.A. Kholodkova, M.N. Danchevskaya, Y.D. Ivakin, et al., Solid state synthesis of barium titanate in air and in supercritical water: Properties of powder and ceramics, Ceram. Int., 45(2019), No. 17, p. 23050. doi: 10.1016/j.ceramint.2019.07.353
      [16]
      S. Wang, Y. Zhang, Z. Ji, Y.S. Gu, Y.H. Huang, and C. Zhou, Characterization and growth dynamics of barium titanate crystallite on nanometer scale, J. Univ. Sci. Technol. Beijing (Engl. Ed.), 12(2005), No. 1, p. 33.
      [17]
      R.A. Surmenev, R.V. Chernozem, A.G. Skirtach, et al., Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursor, Ceram. Int., 47(2021), No. 7, p. 8904. doi: 10.1016/j.ceramint.2020.12.011
      [18]
      M. Li, L.L. Gu, T. Li, et al., TiO2-seeded hydrothermal growth of spherical BaTiO3 nanocrystals for capacitor energy-storage application, Crystals, 10(2020), No. 3, art. No. 202. doi: 10.3390/cryst10030202
      [19]
      Y.F. Peng, H.L. Chen, F. Shi, and J. Wang, Effect of polyethylene glycol on BaTiO3 nanoparticles prepared by hydrothermal preparation, IET Nanodielectr., 3(2020), No. 3, p. 69. doi: 10.1049/iet-nde.2020.0007
      [20]
      H. Hayashi and T. Ebina, Effect of hydrothermal temperature on the tetragonality of BaTiO3 nanoparticles and in-situ Raman spectroscopy under tetragonal–cubic transformation, J. Ceram. Soc. Jpn., 126(2018), No. 3, p. 214. doi: 10.2109/jcersj2.17125
      [21]
      J.B. Gao, H.Y. Shi, H.N. Dong, R. Zhang, and D.L. Chen, Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis, J Nanopart Res, 17(2015), No. 7, art. No. 286. doi: 10.1007/s11051-015-3090-6
      [22]
      İ.C. Kaya, V. Kalem, and H. Akyildiz, Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties, Int. J. Appl. Ceram. Technol., 16(2019), No. 4, p. 1557. doi: 10.1111/ijac.13225
      [23]
      Y.A. Huang, B. Lu, D.D. Li, et al., Control of tetragonality via dehydroxylation of BaTiO3 ultrafine powders, Ceram. Int., 43(2017), No. 18, p. 16462. doi: 10.1016/j.ceramint.2017.09.027
      [24]
      N.N. Hasbullah, S.K. Chen, K.B. Tan, Z.A. Talib, J.Y.C. Liew, and O.J. Lee, Photoluminescence activity of BaTiO3 nanocubes via facile hydrothermal synthesis, J. Mater. Sci.: Mater. Electron., 30(2019), No. 5, p. 5149. doi: 10.1007/s10854-019-00813-3
      [25]
      S. Yin and T. Hasegawa, Morphology control of transition metal oxides by liquid-phase process and their material development, KONA Powder Part. J., 40(2023), p. 94. doi: 10.14356/kona.2023015
      [26]
      X.K. Mo, Y.F. Liu, and Y.J. Li, Effect of additives on particle characteristics of barium titanate nanopowder by hydrothermal synthesis, Mater. Res. Innov., 12(2008), No. 1, p. 35. doi: 10.1179/143307508X270802
      [27]
      K. Nakashima, K. Onagi, Y. Kobayashi, et al., Stabilization of size-controlled BaTiO3 nanocubes via precise solvothermal crystal growth and their anomalous surface compositional reconstruction, ACS Omega, 6(2021), No. 14, p. 9410. doi: 10.1021/acsomega.0c05878
      [28]
      H.Q. Qi, L. Fang, W.T. Xie, H.Q. Zhou, Y. Wang, and C. Peng, Study on the hydrothermal synthesis of barium titanate nano-powders and calcination parameters, J. Mater. Sci.: Mater. Electron., 26(2015), No. 11, p. 8555. doi: 10.1007/s10854-015-3528-8
      [29]
      M.M. Wu, J.B. Long, G.G. Wang, et al., Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions, J. Am. Ceram. Soc., 82(1999), No. 11, p. 3254. doi: 10.1111/j.1151-2916.1999.tb02235.x
      [30]
      C.Y. Su, Y. Otsuka, C.Y. Huang, et al., Grain growth and crystallinity of ultrafine barium titanate particles prepared by various routes, Ceram. Int., 39(2013), No. 6, p. 6673. doi: 10.1016/j.ceramint.2013.01.105
      [31]
      C. Baek, J.H. Yun, H.S. Wang, et al., Enhanced output performance of a lead-free nanocomposite generator using BaTiO3 nanoparticles and nanowires filler, Appl. Surf. Sci., 429(2018), p. 164. doi: 10.1016/j.apsusc.2017.06.109
      [32]
      J. Adam, G. Klein, and T. Lehnert, Hydroxyl content of BaTiO3 nanoparticles with varied size, J. Am. Ceram. Soc., 96(2013), No. 9, p. 2987. doi: 10.1111/jace.12404
      [33]
      H.W. Lee, S. Moon, C.H. Choi, and D.K. Kim, Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method, J. Am. Ceram. Soc., 95(2012), No. 8, p. 2429. doi: 10.1111/j.1551-2916.2012.05085.x
      [34]
      D.V. On, L.D. Vuong, T.V. Chuong, D.A. Quang, H.V. Tuyen, and V.T. Tung, Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles, J. Adv. Dielectr., 11(2021), No. 2, art. No. 2150014. doi: 10.1142/S2010135X21500144
      [35]
      M. Maček Kržmanc, D. Klement, B. Jančar, and D. Suvorov, Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt, Ceram. Int., 41(2015), No. 10, p. 15128. doi: 10.1016/j.ceramint.2015.08.085
      [36]
      M. Özen, M. Mertens, F. Snijkers, and P. Cool, Hydrothermal synthesis and formation mechanism of tetragonal barium titanate in a highly concentrated alkaline solution, Ceram. Int., 42(2016), No. 9, p. 10967. doi: 10.1016/j.ceramint.2016.03.234
      [37]
      Z.F. Zhang, W.B. Wang, and A.Q. Wang, Effects of solvothermal process on the physicochemical and adsorption characteristics of palygorskite, Appl. Clay Sci., 107(2015), p. 230. doi: 10.1016/j.clay.2015.02.004
      [38]
      M. Inada, N. Enomoto, K. Hayashi, J. Hojo, and S. Komarneni, Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol, Ceram. Int., 41(2015), No. 4, p. 5581. doi: 10.1016/j.ceramint.2014.12.137
      [39]
      A.D. Han, X.H. Yan, J.R. Chen, X.J. Cheng, and J.L. Zhang, Effects of dispersion solvents on proton conduction behavior of ultrathin Nafion films in the catalyst layers of proton exchange membrane fuel cells, Acta Phys. Chim. Sin., 38(2022), No. 3, art. No. 1912052. doi: 10.3866/PKU.WHXB201912052
      [40]
      Y.H. Xu, D. Zheng, W.X. Ji, N. Abu-Zahra, and D.Y. Qu, A molecular dynamics study of the binding effectiveness between undoped conjugated polymer binders and tetra-sulfides in lithium–sulfur batteries, Composite Part B, 206(2021), art. No. 108531. doi: 10.1016/j.compositesb.2020.108531
      [41]
      W.E. Moore, The use of an approximate dielectric constant to blend solvent systems, J. Am. Pharm. Assoc. Sci. Ed., 47(1958), No. 12, p. 855. doi: 10.1002/jps.3030471208
      [42]
      Y.J. Yan, H. Xia, Y.Q. Fu, Z.Z. Xu, and Q.Q. Ni, Controlled hydrothermal synthesis of different sizes of BaTiO3 nano-particles for microwave absorption, Mater. Res. Express, 6(2020), No. 12, art. No. 1250i3. doi: 10.1088/2053-1591/ab6daf
      [43]
      R.Y. Guo, Y. Bao, Q.L. Kang, C. Liu, W.B. Zhang, and Q. Zhu, Solvent-controlled synthesis and photocatalytic activity of hollow TiO2 microspheres prepared by the solvothermal method, Colloids Surf. A, 633(2022), art. No. 127931. doi: 10.1016/j.colsurfa.2021.127931
      [44]
      K. Nakashima, K. Hironaka, K. Oouchi, et al., Optimizing TiO2 through water-soluble Ti complexes as raw material for controlling particle size and distribution of synthesized BaTiO3 nanocubes, ACS Omega, 6(2021), No. 48, p. 32517. doi: 10.1021/acsomega.1c04013
      [45]
      C. Baek, J.E. Wang, S. Moon, C.H. Choi, and D.K. Kim, Formation and accumulation of intragranular pores in the hydrothermally synthesized barium titanate nanoparticles, J. Am. Ceram. Soc., 99(2016), No. 11, p. 3802. doi: 10.1111/jace.14397
      [46]
      K.X. Wang, S. Wang, K.S. Hui, et al., Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC–Ru for highly efficient alkaline hydrogen evolution, Carbon Energy, 4(2022), No. 5, p. 856. doi: 10.1002/cey2.188
      [47]
      Z. Su, H.Y. Ling, M. Li, et al., Honeycomb-like carbon materials derived from coffee extract via a “salty” thermal treatment for high-performance Li–I2 batteries, Carbon Energy, 2(2020), No. 2, p. 265. doi: 10.1002/cey2.40
      [48]
      Z.N. Lei, X.Y. Ma, X.Y. Hu, J. Fan, and E.Z. Liu, Enhancement of photocatalytic H2-evolution kinetics through the dual cocatalyst activity of Ni2P–NiS-decorated g-C3N4 heterojunctions, Acta Phys. Chim. Sin., 38(2022), No. 7, art. No. 2110049. doi: 10.3866/PKU.WHXB202110049

    Catalog


    • /

      返回文章
      返回